Conference article

Bioelectricity Power Generation from Organic Substrate in a Microbial Fuel Cell Using Saccharomyces Cerevisiae as Biocatalysts

T. Jafary
Biotechnology Research Lab., Faculty of Chemical Engineering, Noshirvani University, Babol, Iran

G. D. Najafpour
Biotechnology Research Lab., Faculty of Chemical Engineering, Noshirvani University, Babol, Iran

A. A. Ghoreyshi
Biotechnology Research Lab., Faculty of Chemical Engineering, Noshirvani University, Babol, Iran

F. Haghparast
Biotechnology Research Lab., Faculty of Chemical Engineering, Noshirvani University, Babol, Iran

M. Rahimnejad
Biotechnology Research Lab., Faculty of Chemical Engineering, Noshirvani University, Babol, Iran

H. Zare
Biotechnology Research Lab., Faculty of Chemical Engineering, Noshirvani University, Babol, Iran

Download articlehttp://dx.doi.org/10.3384/ecp110571182

Published in: World Renewable Energy Congress - Sweden; 8-13 May; 2011; Linköping; Sweden

Linköping Electronic Conference Proceedings 57:7, p. 1182-1188

Show more +

Published: 2011-11-03

ISBN: 978-91-7393-070-3

ISSN: 1650-3686 (print), 1650-3740 (online)

Abstract

In recent years; as a novel mode of converting organic matter into bioelectricity; Microbial fuel cells (MFCs) have gained significant attention. Among effective parameters in MFCs; substrate type and concentration play major role on MFC performance. In this study; a dual chamber MFC was used with a wide range of fructose concentrations: 10; 20 30 and 40 g/l. The MFC was inoculated with Saccharomyces cerevisiae as biocatalyst. A100µm of neutral red as mediator and also 100µm ferricyanide as oxidizer added to anode and cathode chambers; respectively. The MFC generated an open circuit voltage (OCV) of 690; 768; 548 and 507 mV with concentration of fructose from 10 to 40 g.l-1; respectively. Maximum power density of 32.16; 23.7; 18.9 and 10.47 were obtained with substrate concentration of 10 to 40 g.l-1; respectively. The maximum value of OCV and power density obtained with 10g.l-1 of carbohydrate. To investigate resistance effect on MFC performance; for each substrate concentration data acquisition system was set at optimum value for the resistance w

Keywords

Bioelectricity; External resistance; Fructose; Microbial fuel cell; Saccharomyces cerevisiae

References

[1] S. Meher Kotay and D. Das; Biohydrogen as a renewable energy resource--Prospects and potentials; International Journal of Hydrogen Energy 33; 2008; pp. 258-263. doi: 10.1016/j.ijhydene.2007.07.031.

[2] M. Dresselhaus and I. Thomas; Alternative energy technologies; Nature 414; 2001; pp. 332-337. doi: 10.1038/35104599.

[3] R. Navarro; M. S ?nchez-S ?nchez; M. Alvarez-Galvan; F. Valle; and J. Fierro; Hydrogen production from renewable sources: biomass and photocatalytic opportunities; Energy & Environmental Science 2; 2009; pp. 35-54. doi: 10.1039/b808138g.

[4] M. Parikka; Global biomass fuel resources; Biomass and Bioenergy 27; 2004; pp. 613-620. doi: 10.1016/j.biombioe.2003.07.005.

[5] A. Boudghene Stambouli and E. Traversa; Fuel cells; an alternative to standard sources of energy; Renewable and Sustainable Energy Reviews 6; 2002; pp. 295-304. doi: 10.1016/S1364-0321(01)00015-6.

[6] B. Logan; Peer Reviewed: Extracting Hydrogen and Electricity from Renewable Resources; Environmental science & technology 38; 2004; pp. 160-167. doi: 10.1021/es040468s.

[7] D. Lovley; Microbial fuel cells: novel microbial physiologies and engineering approaches; Current opinion in biotechnology 17; 2006; pp. 327-332. doi: 10.1016/j.copbio.2006.04.006.

[8] M. Grzebyk and G. Pozniak; Microbial fuel cells (MFCs) with interpolymer cation exchange membranes; Separation and Purification Technology 41; 2005; pp. 321-328. doi: 10.1016/j.seppur.2004.04.009.

[9] F. Zhao; F. Harnisch; U. Schr?der; F. Scholz; P. Bogdanoff; and I. Herrmann; Application of pyrolysed iron (II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells; Electrochemistry Communications 7; 2005; pp. 1405-1410. doi: 10.1016/j.elecom.2005.09.032.

[10] S. Patil; V. Surakasi; S. Koul; S. Ijmulwar; A. Vivek; Y. Shouche; and B. Kapadnis; Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber; Bioresource technology 100; 2009; pp. 5132-5139. doi: 10.1016/j.biortech.2009.05.041.

[11] H. Liu; R. Ramnarayanan; and B. Logan; Production of electricity during wastewater treatment using a single chamber microbial fuel cell; Environ. Sci. Technol 38; 2004; pp. 2281-2285. doi: 10.1021/es034923g.

[12] B. Min; S. Cheng; and B. Logan; Electricity generation using membrane and salt bridge microbial fuel cells; Water research 39; 2005; pp. 1675-1686. doi: 10.1016/j.watres.2005.02.002.

[13] J. Jang; Construction and operation of a novel mediator-and membrane-less microbial fuel cell; Process Biochemistry 39; 2004; pp. 1007-1012. doi: 10.1016/S0032-9592(03)00203-6.

[14] B. Logan and J. Regan; Electricity-producing bacterial communities in microbial fuel cells; TRENDS in Microbiology 14; 2006; pp. 512-518. doi: 10.1016/j.tim.2006.10.003.

[15] H. Kim; H. Park; M. Hyun; I. Chang; M. Kim; and B. Kim; A mediator-less microbial fuel cell using a metal reducing bacterium; Shewanella putrefaciens; Enzyme and Microbial technology 30; 2002; pp. 145-152. doi: 10.1016/S0141-0229(01)00478-1.

[16] G. Gil; I. Chang; B. Kim; M. Kim; J. Jang; H. Park; and H. Kim; Operational parameters affecting the performannce of a mediator-less microbial fuel cell; Biosensors and Bioelectronics 18; 2003; pp. 327-334. doi: 10.1016/S0956-5663(02)00110-0.

[17] D. Park and J. Zeikus; Electricity generation in microbial fuel cells using neutral red as an electronophore; Applied and environmental microbiology 66; 2000; pp. 1292. doi: 10.1128/AEM.66.4.1292-1297.2000.

[18] M. Nielsen; D. Wu; P. Girguis; and C. Reimers; Influence of Substrate on Electron Transfer Mechanisms in Chambered Benthic Microbial Fuel Cells; Environmental science & technology 43; 2009; pp. 8671-8677. doi: 10.1021/es9013773.

[19] D. Pant; G. Van Bogaert; L. Diels; and K. Vanbroekhoven; A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production; Bioresource technology 101; pp. 1533-1543. doi: 10.1016/j.biortech.2009.10.017.

[20] J. Niessen; U. Schr?der; and F. Scholz; Exploiting complex carbohydrates for microbial electricity generation-a bacterial fuel cell operating on starch; Electrochemistry Communications 6; 2004; pp. 955-958. doi: 10.1016/j.elecom.2004.07.010.

[21] M. Reddy; S. Srikanth; S. Mohan; and P. Sarma; Phosphatase and dehydrogenase activities in anodic chamber of single chamber microbial fuel cell (MFC) at variable substrate loading conditions; Bioelectrochemistry 77; pp. 125-132. doi: 10.1016/j.bioelechem.2009.07.011.

[22] Y. Zhang; B. Min; L. Huang; and I. Angelidaki; Electricity generation and microbial community response to substrate changes in microbial fuel cell; Bioresource technology 201.

Citations in Crossref