Konferensartikel

Density and Viscosity Correlations for Aqueous 3-Amino-1-propanol and Monoethanol Amine Mixtures

Sumudu S. Karunarathne
Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Norway

Lars E. Øi
Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Norway

Ladda ner artikelhttps://doi.org/10.3384/ecp2017067

Ingår i: Proceedings of The 60th SIMS Conference on Simulation and Modelling SIMS 2019, August 12-16, Västerås, Sweden

Linköping Electronic Conference Proceedings 170:10, s. 67-72

Visa mer +

Publicerad: 2020-01-24

ISBN: 978-91-7929-897-5

ISSN: 1650-3686 (tryckt), 1650-3740 (online)

Abstract

Density and viscosity data and relevant correlations are essentially needed to perform mathematical modelling and simulations for the design of process equipment. Correlations that are developed to cover a range of concentrations and temperatures help to use them in mathematical modelling and simulations of absorption - desorption processes. In this study, a density correlation was proposed for 3A1P (3-Amino-1-propanol) + H2O mixtures. The McAllister three body model was adopted to correlate kinematic viscosity data of MEA (monoethanol amine) + H2O mixtures and kinematic viscosity data for 3A1P + H2O mixtures. The Eyring’s viscosity model based on absolute rate theory was used to correlate dynamic viscosity data. A Redlich – Kister type polynomial was proposed to fit the excess free energy of activation for viscous flow for 3A1P + H2O mixtures. The developed correlations were able to represent density and viscosity data with accepted accuracy and can be used to perform engineering calculations.

Nyckelord

density, viscosity, MEA, 3A1P, McAllister model

Referenser

T. G. Amundsen, L. E. Øi, and D. A. Eimer. Density and viscosity of monoethanolamine + water + carbon dioxide from (25 to 80) oC. J. Chem. Eng. Data, 54: 3096-3100, 2009. 

U. E. Aronu, A. Hartono, and H. F. Svendsen. Density, viscosity, and N2O solubility of aqueous amino acid salt and amine amino acid salt solutions. J. Chem. Thermodynamics, 45: 90-99, 2012. 

E. C. Bingham.  Fluidity and plasticity. McGraw-Hill, New York, 1922.

D. C. Cronauer, R. R. Rothfus, and R. I. Kernmore. Viscosity and density of the ternary liquid system acetone-benzene-ethylene dichloride. J. Chem. Eng. Data, 10: 131-133, 1965.

D. A. Eimer. Gas Treating: Absorption Theory and Practice. John Wiley & Sons. Ltd, 2014.

H. Eyring. Viscosity, Plasticity, and Diffusion as example of absolute reaction rates. Journal of chemical physics, 4: 283-291, 1936. 

R. J. Fort and W. R. Moore. Viscosities of binary liquid mixtures. Transactions of the faraday society, 62: 1112-1119, 1966. 

R. Gonzalez-Olmos and M. Iglesias. Influence of temperature on thermodynamics of ethers + xylenes. Fluid Phase Equilibria, 267(2):133-139, 2008. doi:10.1016/j.fluid.2008. 03.004.

L. Grunberg and A. H. Nissan. Mixture Law for Viscosity. Nature, 164(4175): 799-800, 1949. doi:10.1038/164799b0.

J. Han, J. Jin, D. A. Eimer, and M. C. Melaaen. Density of water (1) + Monoethanolamine (2) + CO2 (3) from (298.15 to 413.15) K and surface tension of water (1) + Monoethanolamine (2) from (303.15 to 333.15) K. J. Chem. Eng. Data, 57: 1095-1103, 2012. 

A. Hartono, M. O. Mba, and H. F. Svendsen. Physical properties of partially CO2 loaded aqueous monoethanolamine (MEA). J. Chem. Eng. Data, 59: 1808-1816, 2014. 

E. L. Heric and J. G. Brewer. Viscosity of some binary liquid nonelectrolyte mixtures. J. Chem. Eng. Data, 12(04): 574-583, 1967. 

Z. Idris and D. A. Eimer. Density measurements of unloaded and CO2 loaded 3-Amino-1-propanol solutions at temperatures (293.15 to 353.15) K.  J. Chem. Eng. Data, 61(1): 173-181, 2016. 

Z. Idris, N. B. Kummamuru, and D. A. Eimer. Viscosity measurement of unloaded and CO2-loaded aqueous monoethanolamine at higher concentrations. Journal of Molecular Liquids, 243: 638-645, 2017. 

Z. Idris, N. B. Kummamuru, and D. A. Eimer. Viscosity measurement and correlation of unloaded and CO2 loaded 3-Amino-1-propanol solution. J. Chem. Eng. Data, 63: 1454-1459, 2018. 

M. N. Islam, M. M. Islam, and M. N. Yeasmin. Viscosity of aqueous solution of 2-methoxyethanol, 2-ethoxyethanol, and ethanolamine. J. Chem. Thermodynamics, 36: 889-893, 2004. 

A. Jouyban, A. Fathi-Azarbayjani, M. Khoubnasabjafari, and W. E. Acree. Mathematical representation of the density of liquid mixtures at various temperatures using Jouyban-Acree model. Indian Journal of Chemistry, 44A: 1553-1560, 2005.

J. Kendall and P. Monroe. The viscosity of liquids. II. The viscosity-composition curve for ideal liquid mixtures. J. Am. Chem. Soc, 39: 1787-1802, 1917. 

R. J. Martins, M. J. D. M. Cardoso, and O. E. Barcia. Excess Gibbs free energy model for calculating the viscosity of binary liquid mixtures. Ind. Eng. Chem. Res, 39: 849-854, 2000. 

R. A. McAllister. The viscosity of liquid mixtures. A.I.Ch.E. Journal, 6: 427-431, 1960. 

R. Meyer, M. Meyer, J. Metzger, and A. Peneloux. Thermodynamic and physicochemical properties of binary solvent. Journal de Chimie Physique et de Physico-Chimie Biologique, 68: 406-412, 1971. 

B. Mukesh, M. G. Sankar, M. C. Shekar, and T. Srikanth. Effect of placement of hydroxyl groups in isomeric butanol on the behavior of thermophysical and spectroscopic properties of 2-Methoxyaniline. Journal of Solution Chemistry, 44(12): 2267-2296, 2015. doi:10.1007/s10953-015-0406-1.

R. K. Nigam and B. S. Mahl. Molecular interaction in binary liquid mixtures of dimethylsulfoxide with chlroethanes & chlroethenes. Indian Journal of Chemistry, 9:1255-1258, 1971. 

O. Redlich and A. T. Kister. Algebraic representation of thermodynamic properties and the classification of

solutions. Industrial and engineering chemistry, 40(2): 345-348, 1948. 

G. T. Rochelle. Amine Scrubbing for CO2 Capture. Science, 325(5948): 1652-1654, 2009. 

Citeringar i Crossref