Optimisation of Low Temperature Difference Solar Stirling Engines using Genetic Algorithm

Kwanchai Kraitong
School of Computing, Engineering and Information Sciences, Northumbria University, Newcastle upon tyne, UK

Khamid Mahkamov
School of Computing, Engineering and Information Sciences, Northumbria University, Newcastle upon tyne, UK

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp110573945

Ingår i: World Renewable Energy Congress - Sweden; 8-13 May; 2011; Linköping; Sweden

Linköping Electronic Conference Proceedings 57:36, s. 3945-3952

Visa mer +

Publicerad: 2011-11-03

ISBN: 978-91-7393-070-3

ISSN: 1650-3686 (tryckt), 1650-3740 (online)


This paper presents results of theoretical investigations on the determination of optimal design parameters of a Low Temperature Difference (LTD) Solar Stirling Engine using optimisation method based on Genetic algorithms. The developed thermodynamic mathematical model of the engine takes into account hydraulic and mechanical losses in the engine’s working process and this model was coupled to the optimisation algorithm. A set of such design parameters as the stroke of the displacer and diameter and stroke of the power piston and the thickness of the regenerator placed in the displacer have been considered as variables. The engine’s performance parameter such as the brake power is used as the objective function of the optimisation algorithm. The GA code is implemented in MATLAB. The accuracy of the optimal design engine’s performance is examined using 3D CFD modelling of the working process of the engine. The set of design parameters obtained from the optimisation procedure provides the noticeable improvement of the engine’s performance compared with the performance of the original LTD Solar Stilring engine with the same operating condition.


LTD Stirling engine; Second-order mathematical model; Mechanical losses; CFD; Genetic algorithm


[1] B. Kongtragool; S. Wongwises; A review of solar-powered Stirling engines and low temperature differential Stirling engines; Renewable and Sustainable Energy Reviews; 2003; pp. 131–154. doi: 10.1016/S1364-0321(02)00053-9.

[2] L. Erbay; H. Yavuz; Analysis of the Stirling heat engine at maximum power conditions; Energy 22; 1996; pp. 645–650. doi: 10.1016/S0360-5442(96)00159-4.

[3] S. Hsu; F. Lin; J. Chiou; Heat-transfer aspects of Stirling power generation using incinerator waste energy; Renewable Energy 28; 2003; pp. 59–69. doi: 10.1016/S0960-1481(02)00018-6.

[4] A. Tavakolpour; A. Zomorodian; A. Golneshan; Simulation; construction and testing of a two-cylinder solar Stirling engine powered by a flat-plate solar collector without regenerator; Renewable Energy 33; 2008; pp. 77–87. doi: 10.1016/j.renene.2007.03.004.

[5] N. Martaj; L. Grosu; P. Rochelle; Exergetical analysis and design optimisation of the Stirling engine; Int. J. of Exergy 3; 2006; pp. 45–46. doi: 10.1504/IJEX.2006.008325.

[6] B. Orunov; V. T. Krykov; A. P. Korobkov; K. Mahkamov; D. Djumanov; The first stage of the development of a small Stirling tri-generation power unit; Proceeding of 12th international Stirling engine conference; 2005; pp. 416–423.

[7] Y. Timoumi; I. Tlili; S. Nasrallah; Design and performance optimization of GPU 3 Stirling engines; Energy URL doi:10.1016/j.energy.2008.02.005. doi: 10.1016/j.energy.2008.02.005.

[8] Y. C. Hsieh; T. C. Hsu; J. S. Chiou; Integration of a free-piston Stirling engine and a moving grate incinerator; Renewable Energy 33; 2008; pp. 48–54. doi: 10.1016/j.renene.2007.01.015.

[9] A. Altman; SNAPpro: Stirling numerical analysis program; URL http://home.comcast.net/snapburner/SNAPpro ISEC 2004.pdf; 2004.

[10] K. Kraitong; K. Mahkamov; Thermodynamic and CFD Modelling of Low Temperature Difference Stirling engines; Proceeding of 14th international Stirling engine conference; 2009.

[11] B. Kongtragool; S.Wongwises; Performance of a twin power piston low temperature differential Stirling engine powered by a solar simulator; Solar Energy 81; 2007; pp. 884-895. doi: 10.1016/j.solener.2006.11.004.

[12] I. Urieli; Stirling Cycle Machine Analysis; URL http://www.ent.ohiou.edu/ urieli/stirling/me422.html>; 2008.

[13] D. C. Hesterman; B. J. Stone; A systems approach to the torsional vibration of multi-cylinder reciprocating engines and pumps; Proc. IMechE 208; 1994; pp. 395–408. doi: 10.1243/PIME_PROC_1994_208_145_02.

[14] A. L. Guzzomi; D. C. Hesterman; B. J. Stone; The effect of piston friction on engine block dynamics; Proc. IMechE 221; 2007; pp. 227–289.

[15] K. Mahkamov; D. Ingham; Analysis of the Working Process and Mechanical Losses in a Stirling Engine for a Solar Power Unit; J. of Solar Energy Engineering 121; 1999; pp. 121–127. doi: 10.1115/1.2888149.

[16] D. E. Goldberg; Genetic Algorithms in Search; Optimization & Machine Learning; Addison-Wesley Publishing Company; USA; 1989; ISBN 0- 201-15767-5.

[17] R. L. Haupt; S. E. Haupt; Practical Genetic Algorithm; John Wiley & Sons; USA; Edition 2nd; 2004; ISBN 0-471-45565-2.

[18] J. R. Senft; An Introduction to Low Temperature Differential Stirling Engines; Moriya Press; USA; 2007; ISBN-13: 978-0965245517.

[19] A. M. S. Zalzala; P. J. Fleming; Genetic Algorithms in Engineering Systems; The Institution of Electrical Engineers; UK; 1997; ISBN 0-85296- 902-3.

[20] S. Elisaveta; B. Natasha; BASIC-A genetic algorithm for engineering problems solution; Computers and Chemical Engineering 30; 2006; pp. 1293–1309. doi: 10.1016/j.compchemeng.2006.03.003.

Citeringar i Crossref