Konferensartikel

Climate Change Mitigation Through Increased Biomass Production and Substitution: A Case Study in Morth-Central Sweden

Bishnu Chandra Poudel
Ecotechnology, Mid Sweden University, Östersund, Sweden

Roger Sathre
Ecotechnology, Mid Sweden University, Östersund, Sweden

Leif Gustavsson
Ecotechnology, Mid Sweden University, Östersund, Sweden \ Linnaeus University, Växjö, Sweden

Johan Bergh
Ecotechnology, Mid Sweden University, Östersund, Sweden \ Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp, Sweden

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp11057628

Ingår i: World Renewable Energy Congress - Sweden; 8-13 May; 2011; Linköping; Sweden

Linköping Electronic Conference Proceedings 57:8, s. 628-635

Visa mer +

Publicerad: 2011-11-03

ISBN: 978-91-7393-070-3

ISSN: 1650-3686 (tryckt), 1650-3740 (online)

Abstract

In this study; we perform an integrated analysis to calculate the potential increases in forest biomass production and substitution as an effect of climate change and intensive management. We use the BIOMASS model to simulate change in Net Primary Production due to climate change. Then we estimate the development of forest biomass growth and harvest by using the HUGIN model; the change in soil carbon stock by the use of the Q-model; and the biomass substitution benefits by the use of an energy and material substitution model. Our results show that an average regional temperature rise of 4 °C could increase annual whole tree forest biomass production by 32% and harvest by 29% over the next 100 years. Intensive forest management including climate effect could increase whole tree biomass production by 58% and harvest by 47%. A total net reduction in carbon emissions of up to 89 Tg C and 182 Tg C over 100 years is possible due to climate change effect only and due to climate change plus intensive forestry; respectively. The carbon stock in standing biomass; forest soils and wood products all increase; but the carbon stock changes are less significant than the substitution benefits.

Nyckelord

Forest biomass; Carbon; Bioenergy; Construction material; Intensive forestry

Referenser

[1] IPCC; Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; ed. S. Solomon; et al. 2007: Cambridge University Press; United Kingdom and New York; USA.

[2] IPCC; The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. 2001; New York ; USA: Cambridge University Press.

[3] SMHI. Climatic data; Swedish Meteorological and Hydrological Institute. 2009 [cited 2009 2; August]; Available from: http://www.smhi.se/cmp/jsp/polopoly.jsp?d=8785&l=sv.

[4] Bergh; J.; U. Nilsson; B. Kjartansson; and M. Karlsson; Impact of climate change on the productivity of Silver birch; Norway spruce and Scots pine stands in Sweden with economic implications for timber production.; Eco.Bulletins; 53(15); 2010: pp. 185-195.

[5] Poudel; B.C.; R. Sathre; L. Gustavsson; J. Bergh; A. Lundström; and R. Hyvönen; Effects of climate change on biomass production and substitution in north-central Sweden; Manuscript; 2010.

[6] Tamm; C.O.; Nitrogen in terrestrial ecosystems; Ecological Studies; (81) 1991: pp. 1-115.

[7] Bergh; J.; U. Nilsson; B. Kjartansson; and M. Karlsson; Impact of climate change on the productivity of Silver birch; Norway spruce and Scots pine stands in Sweden with economic implications for timber production.; Ecological Bulletins; 53(15); 2010: pp. 185-195.

[8] Skogsstyrelsen; Skogliga konsekvensanalyser – SKA-VB 08 in Swedish Forest Agency Rapport. 2008; Skogsstyrelsen; Sweden.

[9] Schlamadinger; B.; M. Apps; F. Bohlin; L. Gustavsson; G. Jungmeier; G. Marland; K. Pingoud; and I. Savolainen; Towards a standard methodology for greenhouse gas balances of bioenergy systems in comparison with fossil energy systems; Biomass and Bioenergy; 13(6); 1997: pp. 359-375. doi: 10.1016/S0961-9534(97)10032-0.

[10] Hall; D.O. and J.I. House; Trees and biomass energy: Carbon storage and/or fossil fuel substitution?; Biomass and Bioenergy; 6(1-2); 1994: pp. 11-30. doi: 10.1016/0961-9534(94)90081-7.

[11] Gustavsson; L.; K. Pingoud; and R. Sathre; Carbon dioxide balance of wood substitution: comparing concrete- and wood-framed buildings; Mitigation and Adaptation Strategies for Global Change; 11(3); 2006: pp. 667-691. doi: 10.1007/s11027-006-7207-1.

[12] IPCC; Climate Change: Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. 2007: Cambridge University Press; United Kingdom and New York; USA.

[13] Skogsstyrelsen. Forestry Statistics; Swedish Forest Agency. 2009 [cited 2009 2; August]; Available from: http://www.svo.se/episerver4/default.aspx?id=38515

[14] IPCC; Special Report on Emissions Scenarios; in Emission Scenarios. Special Report of Working Group ? of the Intergovernmental Panel on Climate Change. 2000; Cambridge University Press; UK.

[15] Kjellström; E.; L. Bärring; S. Gollvik; U. Hansson; C. Jones; P. Samuelsson; M. Rummukainen; A. Ullerstig; Willén; and K. Wyser; A 140-year simulation of European climate with the new version of the Rossby Centre regional atmospheric climate model (RCA3); in SMHI Reports in Meteorology and Climatology; No. 108. 2006; SMHI: Norrköping; Sverige. pp. 54.

[16] SMHI. Climatic data; Swedish Meteorological and Hydrological Institute. 2009 [cited 2009; August; 2]; Available from: http://www.smhi.se/cmp/jsp/polopoly.jsp?d=8785&l=sv.

[17] Poudel; B.C.; R. Sathre; L. Gustavsson; J. Bergh; A. Lundström; and R. Hyvönen; Potential effects of intensive forestry on biomass production and substitution in north-central Sweden; Manuscript; 2010.

[18] McMurtrie; R.E.; D.A. Rook; and F.M. Kelliher; Modelling the yield of Pinus radiata on a site limited by water and nitrogen; Forest Ecology and Management; 30(1-4); 1990: pp. 381-413. doi: 10.1016/0378-1127(90)90150-A.

[19] Lundström; A. and U. Söderberg. Outline of the Hugin system for longterm forecasts of timber yields and possible cut. In Large-Scale Forestry Scenario Models: experiences and requirements. 1996: EFI proceeding.pp. 63-77

[20] Bosatta; E. and G.I. Ågren; Theoretical analyses of carbon and nutrient dynamics in soil profiles; Soil Biology and Biochemistry; 28(10-11); 1996: pp. 1523-1531. doi: 10.1016/S0038-0717(96)00167-8.

[21] Ågren; G.; R. Hyvönen; and T. Nilsson; Are Swedish forest soils sinks or sources for CO2—model analyses based on forest inventory data; Biogeochemistry; 82(3); 2007: pp. 217-227. doi: 10.1007/s10533-006-9064-0.

[22] Berg; S. and E.-L. Lindholm; Energy use and environmental impacts of forest operations in Sweden; Journal of Cleaner Production; 13(1); 2005: pp. 33-42. doi: 10.1016/j.jclepro.2003.09.015.

[23] Davis; J. and C. Haglund; Life cycle inventory (LCI) of fertiliser production - Fertiliser products used in Sweden and Western Europe; in SIK Report No. 654; SIK. 1999; The Swedish Institute for Food and Biotechnology Göteborg; Sweden.

[24] Mead; D.J. and D. Pimentel; Use of energy analyses in silvicultural decision-making; Biomass and Bioenergy; 30(4); 2006: pp. 357-362. doi: 10.1016/j.biombioe.2005.07.015.

[25] Pettersson; H. and G. Ståhl; Functions for belowground biomass of Pinus sylvestris; Picea abies; Betula pendula and Betula pubescens in Sweden; Scandinavian Journal of Forest Research; (21) 2006: pp. 84-93.

Citeringar i Crossref