Conference article

Investigation of fuel reduction potential of a capacity controlled HVAC system for buses using virtual test drives

Christian Kaiser
TLK-Thermo GmbH, Germany

Sebastian Sebastian
Institut für Thermodynamik, TU-Braunschweig, Germany

Wilhelm Tegethoff
TLK-Thermo GmbH, Germany

Jürgen Köhler
Institut für Thermodynamik, TU-Braunschweig, Germany

Download articlehttp://dx.doi.org/10.3384/ecp181547

Published in: Proceedings of The American Modelica Conference 2018, October 9-10, Somberg Conference Center, Cambridge MA, USA

Linköping Electronic Conference Proceedings 154:1, p. 7-16

Show more +

Published: 2019-02-26

ISBN: 978-91-7685-148-7

ISSN: 1650-3686 (print), 1650-3740 (online)

Abstract

The refrigerant cycle in conventional omnibus HVAC systems has a significant influence on fuel consumption and, as a result, on vehicle emissions. The additional emissions resulting from the use of the air conditioning system are called indirect emissions. In addition, there are so-called direct emissions from the air conditioning system caused by unintended leakage of refrigerant. A reduction in indirect emissions can be achieved, for instance, by adjusting the capacity of the refrigerant compressor. A reduction in direct emissions can be achieved by so-called alternative or natural refrigerants. To investigate approaches to reducing direct and indirect emissions, a total vehicle simulation model of a coach with detailed HVAC systems was developed with full implementation in Modelica. For this total vehicle simulation of a coach with a detailed HVAC system, a refrigerant cycle based on the natural refrigerant CO2 (R-744) was modeled and validated. In addition, an efficient control strategy was developed by adjusting the capacity of the refrigerant compressor to cover the actual cooling capacity demand and save fuel. Based on virtual driving test scenarios, the fuel saving potential of the developed compressor capacity control strategy is investigated to determine average annual fuel savings.

Keywords

HVAC, MAC, Energy efficiency, Omnibus, Total vehicle simulation, Virtual test drive, R-744, Fuel saving, Compressor capacity control, Cooling capacity control, Thermal systems

References

Baehr, H. D., Stephan, K. (2006): Wärme- und Stoffübertragung. Springer Verlag, 2006.

Baumgart, R.; Tenberge, P.; Webner, M.; Gebhardt, J. (2006): Riemenscheibe mit integriertem Getriebe zur Drehzahlregelung des Klimakompressors. Wärmemanagement des Kraftfahrzeuges V: 243-255, Expert-Verlag, 2006.

Baumgart, R. (2010): Reduzierung des Kraftstoffverbrauches durch Optimierung von Pkw-Klimaanlagen. Doctoral dissertation, Technische Universität Chemnitz, 2010.

Cavallini, A.; del Col, D.; Doretti, L.; Matkovic, M.; Rossetto, L.; Zilio, C. (2006): Condensation in horizontal smooth tubes. A new heat transfer model for heat exchanger design. Heat Transfer Engineering, 27(8): 31–38, Taylor & Francis, 2006.

Dittus, F. W.; Boelter, L. M. K. (1930): Heat Transfer in Automobile Radiators of the Tubular Type. Publications on Engineering, 2: 443-461, University of California at Berkeley, 1930.

Försterling, S. (2003): Vergleichende Untersuchung von CO2-Verdichtern in Hinblick auf den Einsatz in mobilen Anwendungen. Doctoral dissertation, Technische Universität Braunschweig, 2003.

Fujii, T.; Watabe, M. (1987): Laminar Film Condensation in the Subcritical Region – Gravity Controlled Condensation. JSME Trans, 53: 1801–1806, JSEM – Japan Society of Mechanical Engineers, 1987.

Gnielinski, V. (1975): Neue Gleichungen für den Wärme- und den Stoffübergang in turbulent durchströmten Rohren und Kanälen. Forschung im Ingenieurwesen – Engineering Research, 41(1): 8 – 16, Springer-Verlag, 1975.

Gräber, M.; Kosowski, K.; Richter, C.; Tegethoff, W. (2010): Modelling of heat pump with an object-oriented model library for thermodynamic systems. Mathematical and Computer Modelling of Dynamical Systems, 16(3): 195–209, Taylor & Francis, 2010.

Gungor, K. E.; Winterton, R. H. S. (1987): Simplified General Correlation for Saturated Flow Boiling and Comparison of Correlation with Data. Chemical Engineering Research and Design, 65(2): 148–156, Elsevier Science B.V., 1987.

Haaf, S. (1988): Wärmeübertragung in Luftkühlern. Handbuch der Kältetechnik: 6(B), Springer-Verlag, 1988.

Hebeler, M.; Ebeling, P.; Tegethoff, W.; Köhler, J.: Exhaust Waste Heat Recovery for Intercity Bus Climatisation using Rankine Technology with Focus on Topology Design. 2nd ETA Conference, IAV Automotive Engineering, 2018.

Kaiser, C., Baumgart, R., Aurich, J., Tegethoff, W., Köhler, J. (2013): Konzepte für die Reduzierung des Kraftstoffverbrauchs von Omnibusklimaanlagen. 12. Internationale Fachtagung Nutzfahrzeuge: 269-284, VDIVerlag, 2013.

Kaiser, C. (2018): Untersuchungen zur Effizienz- und Leistungsverbesserung von Omnibusklimaanlagen. Unpublished doctoral dissertation, Technische Universität Braunschweig, 2018.

Kondou, C.; Hrnjak, P. (2011): Heat Rejection from R744 Flow Under Uniform Temperature Cooling in a Horizontal Smooth Tube around the Critical Point. International Journal of Refrigeration, 34: 1293– 301, Elsevier Science B.V., 2011.

McAdams, W. H.; Woods, W. K.; Heroman, L. C. (1942): Vaporization inside horizontal tubes-II-benzene-oil mixtures. Trans. ASME, 64(3): 193–200, American Society of Mechanical Engineers, 1942.

Meise, S.; Kaiser, C.; Engel, P.; Lemke, N.; Köhler, J.: R-744-Ejektor-Wärmepumpe für elektrische Gelenkbusse. Deutsche Kälte-Klima-Tagung, DKV e.V., 2018.

METEONORM (2016): Software for the determination of worldwide weather data. METEOTEST, Version: 7.1.10 [Computer Software], 2016.

Remund, J.; Müller, S.; Kunz, S.; Huguenin-Landl, B.; Schmid, C.; Schilter, C. (2013): METEONORM – Global Meterological Database. Hanbook I/II. METEOTEST, 2013.

Richter, C. C. (2008): Proposal of New Object-Oriented Equation-Based Model Libraries for Thermodynamic Systems. Doctoral dissertation, Technische Universität Braunschweig, 2008.

Rohsenow, M. W.; Hartnett, P. J.; Ganic, E. N. (1985): Handbook of Heat Transfer Fundamentals. McGraw-Hill, 1985.

Schulze, C. W. (2013): A Contribution to Numerically Efficient Modelling of Thermodynamic Systems. Doctoral dissertation, Technische Universität Braunschweig, 2013.

Swamee, P. K.; Jain, A. K. (1976): Explicit Equations for Pipe-Flow Problems. Journal of the Hydralics Division: 102(5): 657–664, ASCE – American Society of Civil Engineers, 1976.

Tegethoff, W.; Schulze, C.; Gräber, M.; Huhn, M.; Stulgies, N.; Kaiser, C.; Loeffler, M. (2011): TEMO: Thermische echtzeitfähige Modelle. Bundesministerium für Bildung und Forschung (BMBF), 2011.

TIL Suite (2018): Software package for the simulation of thermal systems. TLK-Thermo GmbH, Version 3.4 [Computer Software], 2018.

Wallis, G. B. (1969): One-dimensional Two-phase Flow. MCGraw-Hill, 1969.

Citations in Crossref