Conference article

Mirror Stereoscopic Display for Direct Volume Rendering

Filipe Marreiros
Center for Medical Image Science and Visualization (CMIV), Linköping University/Department of Science and Technology (ITN) - Media and Information Technology (MIT) , Linköping University, Sweden

Örjan Smedby
Center for Medical Image Science and Visualization (CMIV), Linköping University/Department of Science and Technology (ITN) - Media and Information Technology (MIT) , Linköping University/Department of Radiology (IMH), Linköping University, Sweden

Download article

Published in: Proceedings of SIGRAD 2014, Visual Computing, June 12-13, 2014, Göteborg, Sweden

Linköping Electronic Conference Proceedings 106:10, p. 75-82

Show more +

Published: 2014-10-30

ISBN: 978-91-7519-212-3

ISSN: 1650-3686 (print), 1650-3740 (online)

Abstract

A new mirror stereoscopic display for Direct Volume Rendering (DVR) is presented. The stereoscopic display system is composed of one monitor and one acrylic first surface mirror. The mirror reflects one image for one of the eyes. The geometrical transformations to compute correctly the stereo pair is presented and is the core of this paper. System considerations such as mirror placement and implications are also discussed. In contrast to other similar solutions, we do not use two monitors, but just one. Consequently one of the images needs to be skewed. Advantages of the system include absence of ghosting and of flickering. We also developed the rendering engine for DVR of volumetric datasets mostly for medical imaging visualization. The skewing process in this case is integrated into the ray casting of DVR. Using geometrical transformations, we can compute precisely the directions of the rays, producing accurate stereo pairs.

Keywords

No keywords available

References

[Bar03] BARCO: Stereoscopic projection: 3d projection technology. http://www.barco.com/projection\_systems/downloads/barco\_stereoscopic\_proj.pdf, 2003. 1

[Ber96] BERTHIER A.: Images stéréoscopiques de grand format (in French). Cosmos 34, 590 and 591 (May 1896), 205–210 and 227–233. 1

[BES00] BIMBER O., ENCARNAÇÃO L. M., SCHMALSTIEG D.: Augmented reality with back-projection systems using transflective surfaces. Computer Graphics Forum (Proceedings of EUROGRAPHICS 2000) 19, 3 (2000), 161–168. 3

[BFSE01] BIMBER O., FRÖHLICH B., SCHMALSTIEG D., ENCARNAÇÃO L. M.: The virtual showcase. IEEE Computer Graphics and Applications 21, 6 (2001), 48–55. 3

[Boh] BOHÁČ M.: Dual monitor setup for stereoscopic viewing. http://klub.stereofotograf.eu/dual\_monitor.php. 2, 8

[Bou99] BOURKE P.: Calculating stereo pairs. http://paulbourke.net/miscellaneous/stereographics/stereorender/, 1999. 7

[CV95] CUTTING J. E., VISHTON P. M.: Perceiving layout and knowing distances: The integration, relative potency, and contextual use of different information about depth. "W. Epstein and S. Rogers (eds.), Handbook of perception and cognition", 1995. 1, 7

[DCH88] DREBIN R. A., CARPENTER L., HANRAHAN P.: Volume rendering. SIGGRAPH Computer Graphics 22, 4 (1988), 65–74. 3

[Dod04] DODGSON N. A.: Variation and extrema of human interpupillary distance. In Proc. of SPIE: Stereoscopic Displays and Virtual Reality Systems XI (2004), vol. 5291, pp. 36–46. 2

[FRM*05] FERGASON J., ROBINSON S., MCLAUGHLIN C., BROWN B., ABILEAH A., BAKER T., GREEN P.: An innovative beamsplitter-based stereoscopic/3d display design. SPIE Stereoscopic Displays and Virtual Reality Systems 5664 (May 2005), 488–494. 2

[GCC*89] GORDON C. C., CLAUSER B. B. C. E., CHURCHILL T., MCCONVILLE J. T., TEBBETTS I., WALKER R. A.: 1987-1988 anthropometric survey of u.s. army personnel: Methods and summary statistics. tr-89-044. natick ma: U.s. army natick research, development and engineering center., 1989. 2

[Gra68] GRAND Y. L.: Light, Color and Vision, second ed. London: Chapman and Hall, 1968. 7

[Hea81] HEATH S. T. L.: A history of Greek mathematics. Volume II:From Aristarchus to Diophantus. Oxford: At The Clarendon Press., 1981. 2

[Hen93] HENSON D.: Visual Fields. Oxford: Oxford University Press, 1993. 4

[HHM98] HUBBOLD R., HANCOCK D., MOORE C.: Stereoscopic volume rendering. Proc. Visualization in Scientific Computing ’98 6, 3 (1998), 105–115. 7

[Hol05] HOLLIMAN N.: 3d display systems. http://www.dur. ac.uk/n.s.holliman/Presentations/3dv3-0.pdf, 2005. 1

[HWSB99] HUBONA G., WHEELER P., SHIRAH G., BRANDT M.: The relative contributions of stereo, lighting and background scenes in promoting 3d depth visualization. ACM Transaction on Computer-Human Interaction 6, 3 (1999), 214–242. 7

[Ive02] IVES F. E.: A novel stereogram. Journal of the Franklin Institute 153 (1902), 51–52. 1

[JF03] JORKE H., FRITZ M.: Infitec-A new stereoscopic visualization tool by wavelength multiplexing imaging. In Proc. Electronic Displays (2003). 1

[KH07] KONRAD J., HALLE M.: 3-d displays and signal processing. IEEE Signal Processing Mag. 24, 7 (May 2007), 97–111. 1, 2

[KSTE06] KERSTEN M., STEWART J., TROJE N., ELLIS R.: Enhancing depth perception in translucent volumes. IEEE Transactions on Visualization and Computer Graphics 12, 5 (2006), 1117–1124. 7

[Lev88] LEVOY M.: Display of surfaces from volume data. IEEE Computer Graphics and Applications 8, 3 (May 1988), 29–37. 3

[MM05] MARREIROS F. M. M., MARCOS A.: Calculating the stereo pairs of a mirror-based augmented reality system. 13o Encontro Português de Computação Gráfica (2005). 7

[MS13] MARREIROS F. M. M., SMEDBY Ö.: Stereoscopic static depth perception of enclosed 3d objects. In SAP ’13 Proceedings of the ACM Symposium on Applied Perception (2013), pp. 15–22. 7

[Nvi12] NVIDIA: 3D Vision. http://www.nvidia.com/object/3d-vision-main.html, 2012. 1

[OO90] OWCZARCZYK J., OWCZARCZYK B.: Evaluation of true 3d display systems for visualizing medical volume data. The Visual Computer 6, 4 (1990), 219–226. 7

[Pla] PLANAR3D: 3D Technologies. http://www.planar3d. com/3d-technology/3d-technologies/. 2

[Sac04] SACKETT C.: Survey of optical systems: Phys 531, lecture 11, university of virginia. http://galileo.phys.virginia.edu/classes/531.cas8m.fall04/l11.pdf, 2004.
7

[TSO*12] TOURANCHEAU S., SJÖSTRÖM M., OLSSON R., PERSSON A., RUDLING J., ERICSON T., NORÉN B.: Subjective evaluation of user experience in interactive 3d visualization in a medical context. Proc. SPIE 8318, 831814 (2012), 219–226. 7

[WC10] WU H.-H. P., CHANG S.-H.: Design of stereoscopic viewing system based on a compact mirror and dual monitor. SPIE Optical Engineering 027401 49, 2 (2010), 1–6. 2

[WT05] WICKENS C., THOMAS L.: Effects of CDTI display dimensionality and conflict geometry on conflict resolution performance. In Proceedings of the 13th International Symposium on Aviation Psychology (2005). 7

Citations in Crossref