Conference article

Validation of results from Barracuda® CFD modelling to predict the minimum fluidization velocity and the pressure drop of Geldart A particles

Chameera Jayarathna
Department of Process, Energy and Environmental Technology, University College of South East Norway / Tel-Tek, Research institute, Porsgrunn, Norway

Britt Moldestad
Department of Process, Energy and Environmental Technology, University College of South East Norway

Lars-André Tokheima
Department of Process, Energy and Environmental Technology, University College of South East Norway

Download articlehttp://dx.doi.org/10.3384/ecp1713876

Published in: Proceedings of the 58th Conference on Simulation and Modelling (SIMS 58) Reykjavik, Iceland, September 25th – 27th, 2017

Linköping Electronic Conference Proceedings 138:10, p. 76-82

Show more +

Published: 2017-09-27

ISBN: 978-91-7685-417-4

ISSN: 1650-3686 (print), 1650-3740 (online)

Abstract

Fluidization characteristics such as the minimum fluidization velocity and the bed pressure drop are important for the design of an efficient fluidized bed. These characteristics can be measured experimentally, but also modelled by CFD simulations. The aim of this study was to use experimental data to validate drag models applied in the CFD software Barracuda. Most of the drag models available in the literature are validated against Geldart B or D particles and are not necessarily suitable for Geldart A particles, such as the zirconia particles used in the present study. However, by adjusting one of the constants in the Wen-Yu and Ergun drag models, it should be possible to apply these equations also for Geldart A particles. Data from an in-house built lab-scale fluidized bed unit were used in the study. Reducing the k1 value in the drag model from 180 to 47 gave a reasonable representation of the minimum fluidization velocity and the pressure drop over the bed.

Keywords

CFD, CPFD, Barracuda, fluidization, pressure drop, minimum fluidization velocity, MP-PIC

References

No references available

Citations in Crossref