Tobias Zaiczek
Fraunhofer Institute for Integrated Circuits, Design Automation Division, Dresden, Germany
Olaf Enge-Rosenblatt
Fraunhofer Institute for Integrated Circuits, Design Automation Division, Dresden, Germany
Download articlePublished in: Proceedings of the 2nd International Workshop on Equation-Based Object-Oriented Languages and Tools
Linköping Electronic Conference Proceedings 29:14, p. 131-140
Published: 2008-07-02
ISBN: 978-91-7519-823-1
ISSN: 1650-3686 (print), 1650-3740 (online)
This paper deals with a first implementation of the socalled motor calculus within Modelica. The motor calculus can be used to describe the dynamical behaviour of spatial multibody systems in an efficient way. This method represents an alternative approach to modelling of multibody systems. In the paper; some fundamentals of motor calculus are summarized. Furthermore; a simple implementation of motor algebra by special additional Modelica code within some components of the Modelica Multibody Standard Library is presented. This approach fully corresponds with the paradigm of object-oriented modelling. However; the present realisation is not equation-based in its full sense because of the missing possibility of operator overloading (at least in the available Modelica simulator environment). Instead of this; some functions are used carrying out the necessary calculations. Using this implementation; some examples are given to prove the applicability and correctness of the implemented approach.
[1] R.S. Ball. A Treatise on the Theory of Skrews. Cambridge University Press; 1900.
[2] F. Casella and M. Lovera. High-accuracy orbital dynamics simulation through Keplerian and equinoctial parameters. In 6th International Modelica Conference; Bielefeld; Germany; March 3–4; 2008; Proc.; pages 505–514. The Modelica Association; 2008.
[3] F.E. Cellier. Continuous System Modeling. Springer; 1991.
[4] W.K. Clifford. Preliminary sketch of bi-quaternions. Proc. London Math. Soc.; 4:381–395; 1873.
[5] P. Fritzson. Principles of Object-Oriented Modeling and Simulation with Modelica 2.1. Wiley-IEEE Press; 2003.
[6] J. Gallardo-Alvarado. Kinematics of a hybrid manipulator by means of screw theory. Journal Multibody System Dynamics; 14(3–4):345–366; 2005.
[7] A. Haumer; C. Kral; J.V. Gragger; and H. Kapeller. Quasistationary modeling and simulation of electrical circuits using complex phasors. In 6th International Modelica Conference; Bielefeld; Germany; March 3–4; 2008; Proc.; pages 229–236. The Modelica Association; 2008.
[8] C. Heinz. Motorrechnung im X1+3+3. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM); 67(11):537–544; 1987.
[9] C. Knobel; G. Janin; and A. Woodruff. Development and verification of a series car Modelica/Dymola multibody model to investigate vehicle dynamics systems. In 5th International Modelica Conference; Vienna; Austria; September 4–5; 2006; Proc.; pages 167–173. The Modelica Association; 2006.
[10] I.I. Kosenko; M.S. Loginova; YA.P. Obraztsov; and M.S. Stavrovskaya. Multibody systems dynamics: Modelica implementation and Bond Graph representation. In 5th International Modelica Conference; Vienna; Austria; September 4–5; 2006; Proc.; pages 213–223. The Modelica Association; 2006.
[11] R. von Mises. Motorrechnung; ein neues Hilfsmittel der Mechanik. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM); 4(2):155–181; 1924.
[12] R. von Mises. Anwendungen der Motorrechnung. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM); 4(3):193–213; 1924.
[13] http://www.modelica.org/documents. seen on April 22nd; 2008.
[14] http://www.modelica.org/libraries/ - Modelica/. seen on April 22nd; 2008.
[15] M. Otter; H. Elmqvist; and S. E. Mattsson. The New Modelica MultiBody Library. In 3rd International Modelica Conference; Linköping; Sweden; November 3–4; 2003; Proc.; pages 311–330. The Modelica Association; 2003.
[16] T. Pulecchi and M. Lovera. Object-oriented modelling of the dynamics of a satellite equipped with single gimbal control moment gyros. In 4th International Modelica Conference; Hamburg; Germany; March 7–8; 2005; Proc.; pages 35–44. The Modelica Association; 2005.
[17] B. Stroustrup. The C++ Programming Language – Special Edition. Addison-Wesley; 2007.
[18] H. Stumpf and J. Badur. On the non-abelian motor calculus. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM); 70(12):551–555; 1990.
[19] M.M. Tiller. Introduction to Physical Modeling with Modelica. Springer; 2001.
[20] L. Viganò and G. Magnani. Acausal modelling of helicopter dynamics for automatic flight control applications. In 5th International Modelica Conference; Vienna; Austria; September 4–5; 2006; Proc.; pages 377–384. The Modelica Association; 2006.
[21] T. Zaiczek. Modellbildung für mechanische Systeme mit einer endlichen Anzahl von Freiheitsgraden und Steuerungsentwurf mithilfe von m 1 Aktuatoren. Technical report; 2006.
[22] T. Zaiczek. Modellierung; Regelung und Simulation mechanischer Starrkörpersysteme im dreidimensionalen Raum. Diploma thesis; TU Dresden; Germany; 2007.