Conference article

50-nm gate-length InP-based HEMTs for millimeterwave applications

Anders Mellberg
Microwave Electronics Laboratory, Chalmers University of Technology, Sweden

Per-åke Nilsson
Microwave Electronics Laboratory, Chalmers University of Technology, Sweden

Niklas Rorsman
Microwave Electronics Laboratory, Chalmers University of Technology, Sweden

Jan Grahn
Microwave Electronics Laboratory, Chalmers University of Technology, Sweden

Herbert Zirath
Microwave Electronics Laboratory, Chalmers University of Technology, Sweden

Download article

Published in: GigaHertz 2003. Proceedings from the Seventh Symposium

Linköping Electronic Conference Proceedings 8:17, p.

Show more +

Published: 2003-11-06

ISBN:

ISSN: 1650-3686 (print), 1650-3740 (online)

Abstract

InP-based HEMT technology presents substantial performance advantages for millimeter wave applications such as high-speed wireless communications; radio astronomy; and radar. We report on the development of a 50-nm gate-length process for millimeter wave InP HEMTs. The gate patterns were defined using a single electron beam exposure and a bi-layer resist system. The process was evaluated on pseudomorphic InAlAs/InGaAs/InP HEMT material. A two-finger; 100 µm gate-width device showed an extrinsic DC peak transconductance of 650 mS/mm at Vds = 1.0 V. At the same drain bias; the transit frequency and the maximum frequency of oscillation were 180 and 230 GHz respectively. The developed 50-nm process constitutes the new baseline for the InP MMIC process at the Microwave Electronics Laboratory at Chalmers.

Keywords

No keywords available

References

No references available

Citations in Crossref