Nima Ghaviha
Mälardalen University, School of Business, Society and Engineering, Sweden
Mälardalen University, School of Business, Society and Engineering, Sweden
Fredrik Wallin
Mälardalen University, School of Business, Society and Engineering, Sweden
Erik Dahlquist
Mälardalen University, School of Business, Society and Engineering, Sweden
Markus Bohlin
SICS Swedish ICT AB, Sweden
Download articlePublished in: Proceedings of the 55th Conference on Simulation and Modelling (SIMS 55), Modelling, Simulation and Optimization, 21-22 October 2014, Aalborg, Denmark
Linköping Electronic Conference Proceedings 108:30, p. 300-307
Published: 2014-12-09
ISBN: 978-91-7519-376-2
ISSN: 1650-3686 (print), 1650-3740 (online)
This paper offers a solution for the optimal EMU train (Electric Multiple Unit) operation with the aim of minimizing the energy consumption. EMU is an electric train with traction motors in more than one carriage. The algorithm is based on dynamic programming and the Hamilton-Jacobi-Bellman equation. To model the train, real data has been used, which was provided by experts from Bombardier Transportation Västerås. To evaluate the model, some experiments have been done on the energy saving in exchange for the increase in the trip time. Moreover a simple accuracy factor is introduced to evaluate the accuracy of the model. The final goal is to use this approach as a base for a driver advisory system, therefore it is important to have the amount of calculations as minimum as possible. The paper also includes the studies done on the calculation time. The solution can be used for driverless trains as well as normal trains. It should be mentioned that this paper is a part of a research which is still in progress and the final model will also be used by Bombardier Transportation Västerås as an evaluation tool for the propulsions systems and trains.