Anthony Goncalves
t3e Industrial research chair, École de technologie supérieure, Montréal, Canada
Daniel Rousse
t3e Industrial research chair, École de technologie supérieure, Montréal, Canada
Julien Milot
Energy Solutions Associates, Lévis, Canada
A. A. Ghoreyshi
Chemical Engineering Department, Babol University of Technology, Babol, Iran
T. Jafary
Chemical Engineering Department, Babol University of Technology, Babol, Iran
G. D. Najafpour
Chemical Engineering Department, Babol University of Technology, Babol, Iran
F. Haghparast
Chemical Engineering Department, Babol University of Technology, Babol, Iran
J. Lund
National Renewable Energy Laboratory, Golden, Colorado, USA
Steffi Dimke
University of Rostock, Coastal Engineering Group, Germany
Frank Weichbrodt
University of Rostock, Coastal Engineering Group, Germany
Peter Froehle
University of Rostock, Coastal Engineering Group, Germany
Elin Svensson
Dept. of Energy and Environment, Chalmers University of Technology, Göteborg, Sweden
Simon Harvey
Dept. of Energy and Environment, Chalmers University of Technology, Göteborg, Sweden
Howard J. Darby
Technologies for Sustainable Built Environments, University of Reading, Reading, UK
Abbas A. Elmualim
School of Construction Management and Engineering, University of Reading, Reading, UK
Fergal Kelly
Peter Brett Associates LLP, Reading, UK
Qingjie Du
Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
Dennis Y. C. Leung
Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
Göran Wall
Department of Culture, Energy and Environment, Gotland University, Visby, Sweden
Alaeddine Mokri
Solar Energy Materials and Devices Lab, Masdar Institute of Science and Technology, Abu Dhabi, UAE
Mahieddine Emziane
Solar Energy Materials and Devices Lab, Masdar Institute of Science and Technology, Abu Dhabi, UAE
F. Roseta-Vaz-Monteiro
CIAUD - Faculty of Architecture, Technical University of Lisbon, Lisbon, Portugal
E. M. Karayianni-Vasconcelos
CIAUD - Faculty of Architecture, Technical University of Lisbon, Lisbon, Portugal
M. K. Ghosal
Department of Farm Machinery and Power, College of Agricultural Engineering and Technology, Orissa, University of Agriculture and Technology, India
D. K. Das
Orissa Lift Irrigation Corporation, Government of Orissa, Orissa, India
S. P. Dash
Department of Farm Machinery and Power, College of Agricultural Engineering and Technology, Orissa, University of Agriculture and Technology, India
Spiros Alexopoulos
Solar-Institut Jülich, University of Applied Sciences Aachen, Jülich,Germany
Bernhard Hoffschmidt
Solar-Institut Jülich, University of Applied Sciences Aachen, Jülich,Germany
Christoph Rau
Solar-Institut Jülich, University of Applied Sciences Aachen, Jülich,Germany
Johannes Sattler
Solar-Institut Jülich, University of Applied Sciences Aachen, Jülich,Germany
Mats Sandberg
University of Gävle, Gävle, Sweden
Hans Wigö
University of Gävle, Gävle, Sweden
Leif Clæsson
University of Gävle, Gävle, Sweden
Mathias Cehlin
University of Gävle, Gävle, Sweden
Sebastian Schwede
Ruhr-Universität Bochum, Thermodynamics, Bochum, Germany
Alexandra Kowalczyk
Ruhr-Universität Bochum, Thermodynamics, Bochum, Germany
Mandy Gerber
Ruhr-Universität Bochum, Thermodynamics, Bochum, Germany
Roland Span
Ruhr-Universität Bochum, Thermodynamics, Bochum, Germany
Amr Elwan
School of Architecture, University of Sheffield, Sheffield, UK \ Department of Architecture, Military Technical College, Cairo, Egypt
Chengzhi Peng
School of Architecture, University of Sheffield, Sheffield, UK
Mohammad Fahmy
Department of Architecture, Military Technical College, Cairo, Egypt
Download article
http://dx.doi.org/10.3384/ecp11057788Published in: World Renewable Energy Congress - Sweden; 8-13 May; 2011; Linköping; Sweden
Linköping Electronic Conference Proceedings 78:6, p. 788-795
With improved greenhouses; farmers have to ventilate. An air-to-air multi-tube counter flow heat exchanger unit was installed in a greenhouse used for the experimental cultivation of hydroponic tomatoes and cucumbers. This 24m long unit involves a 12” O.D. external shell used to exhaust moist air and five inner tubes to bring fresh air inside. The tests; carried out between March and May in a 576 m3 enclosure; demonstrated that average efficiencies of ?=84% and ?=78% were obtainable with air volumetric exchanges rates of 0.5 and 0.9 change per hour; respectively. Latent heat was found to play a major role in the overall heat transfer; contributing about 40% of the total energy exchanged in some situations. The exchanger could be buried underneath the ground or suspended above the crops. The unit made of plastic is durable; rot and rust resistant; affordable; and is ice and frost compliant. A pre commercial implementation with an improved design is now considered in collaboration with Gaz Metro. This paper presents the original prototype that help in reducing the consumption of natural gas; fuel; bunker; or propane.
[1] E. Brundrett; T.J. Jewett; and R. Quist; Evaluation of polytube heat exchangers for greenhouse ventilation". Acta-horticultarae; 148; 1984; pp.49-55.
[2] J.N. Walker and D.J. Cotter; Condensation and resultant humidity in greenhouses durng cold weather; Trans. ASEA; 11(2); 1968; pp.263-266.
doi: 10.13031/2013.39387.
[3] D.J.Cotter and R.T. Seay; The effect of circulating air on the environment and tomato growth response in a plastic greehouse; Roc. ASHS; 77; 1961; pp.345-342.
[4] SPSQ.; Ékiloserre; Projet d’amélioration de la situation énergétique de l’industrie serricole québécoise; Rapport Final; Syndicat des Producteurs en Serre du Québec; St-Hyacinthe; 1995.
[5] D. DeHalleux; and L. Gauthier; Consommation énergétique due à la déshumidification des serres au Québec; Université Laval; Québec; 1995.
[6] BNQ.; Norme 3624-115 (91-08-01); Tubes annelés flexibles et raccords en thermoplastique pour le drainage des sols; Bureau de Normalisation du Québec; Québec; 1991.
[7] BNQ.; Norme 3624-120 (90-02-20); Tuyaux annelés à l’intérieur lisse et raccords en plastiques Pe ou PP pour l’évacuation des eaux pluviales; Bureau de Normalisation du Québec; Québec; 1990.
[8] A. Bejan; Convection Heat Transfer; 2nd ed.; Wiley; New-York; 1993
[9] V. Gnielinski; New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow; Int. Chem. Eng.; vol.16; 1976; pp.359-368.
[10] V. Gnielinski; Forced Convection in Ducts; in G.F.Hewitt (ed.); Handbook of Heat Exchanger Design; Begell House; NY; 1952; section 2.5.1-5.
[11] H. Hausen; Darstellung des Wärmeüberganges in Rohren durch verallgemeinerte Potenzbezeihungen; Z. Ver. Dtsch. Ing. Beiheft Verfahrenstech.; vol.4; 1943; pp.91-134.
[12] H. Hausen; Heat Transfer in Counterflow; Parallel Flow and Cross Flow; McGraw-Hill; USA; 1983.