Magnus Sahlgren
RISE, Sweden
Fredrik Olsson
RISE, Sweden
Download articlePublished in: Proceedings of the 22nd Nordic Conference on Computational Linguistics (NoDaLiDa), September 30 - October 2, Turku, Finland
Linköping Electronic Conference Proceedings 167:4, p. 35--43
NEALT Proceedings Series 42:4, p. 35--43
Published: 2019-10-02
ISBN: 978-91-7929-995-8
ISSN: 1650-3686 (print), 1650-3740 (online)
This paper investigates the presence of gender bias in pretrained Swedish embeddings. We focus on a scenario where names are matched with occupations, and we demonstrate how a number of standard pretrained embeddings handle this task. Our experiments show some significant differences between the pretrained embeddings, with word-based methods showing the most bias and contextualized language models showing the least. We also demonstrate that the previously proposed debiasing method does not affect the performance of the various embeddings in this scenario.
gender bias
word embeddings
contextualized embeddings
pretrained Swedish embeddings