Conference article

Enhancing safety of independent metering systems for mobile machines by means of fault detection

B. Beck
Technische Universität Dresden, Dresden, Germany

J. Weber
Technische Universität Dresden, Dresden, Germany

Download articlehttp://dx.doi.org/10.3384/ecp1714492

Published in: Proceedings of 15:th Scandinavian International Conference on Fluid Power, June 7-9, 2017, Linköping, Sweden

Linköping Electronic Conference Proceedings 144:9, p. 92-102

Show more +

Published: 2017-12-20

ISBN: 978-91-7685-369-6

ISSN: 1650-3686 (print), 1650-3740 (online)

Abstract

Systems with independent metering offer a high potential for increasing the functionality and efficiency of valve-controlled hydraulic drives. But nowadays there are only a few prototypical applications. One reason for that are the so far insufficient safety investigations. Besides the structural investigations carried out at the research institute, this contribution deals with a fault detection by means of limit checking of the applied pressure sensors. A detection algorithm is derived from several software-in-the-loop simulations of the independent metering system applied at an excavator arm. The functionality and limits of the fault detection will be shown by means of measurements. As a result, all safety-critical faults can be detected which leads to a Diagnostic Coverage of DC = 99% and thus allows the use of independent metering up to a Performance Level PL = e.

Keywords

Hydraulic systems, independent metering, machine safety, ISO 13849, fault detection

References

[1] B. Beck and J. Weber. Safety and Reliability of Independent Metering Systems in Mobile Machinery. Risk, Reliability and Safety: Innovating Theory and Practice: Proceedings of ESREL 2016, Tylor & Francis Group, London, 2017.

[2] J. Lübbert, A. Sitte, and J. Weber. Pressure compensator control – a novel independent metering architecture. 10th International Fluid Power Conference (10. IFK) March 8 - 10, 2016 in Dresden, Dresden, 2016, vol. 1, pp. 231–246.

[3] R. Isermann. Fault-Diagnosis Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.

[4] M. Münchhof, M. Beck, and R. Isermann, “Fault-tolerant actuators and drives—Structures, fault detection principles and applications. Annual Reviews in Control, vol. 33, no. 2, pp. 136–148, 2009.

[5] J. Richalet. Industrial applications of model based predictive control. Automatica, vol. 29, no. 5, pp. 1251–1274, 1993.

[6] J. Nurmi and J. Mattila. Detection and Isolation of Faults in Mobile Hydraulic Valves Based on a Reduced-Order Model and Adaptive Thresholds. Proceedings of ASME/BATH 2013 Symposium on Fluid Power and Motion Control, Sarasota, 2013.

[7] D. Schmitz. Entwurf eines fehlertoleranten Lenkventils für Steer-by-Wire Anwendungen bei Traktoren. Karlsruher Institut für Technologie (KIT), Karlsruhe, 2014.

[8] Z. Shi, F. Gu, B. Lennox, and A. D. Ball. The development of an adaptive threshold for model-based fault detection of a nonlinear electro-hydraulic system. Control Engineering Practice, vol. 13, no. 11, pp. 1357–1367, 2005.

[9] H. Khan, S. C. Abou, and N. Sepehri. Nonlinear observer-based fault detection technique for electrohydraulic servo-positioning systems. Mechatronics, vol. 15, no. 9, pp. 1037–1059, 2005.

[10] T. Ramdén. Condition monitoring and fault diagnosis of fluid power systems: approaches with neural networks and parameter identification. Linköping: Dep. Of Mechanical Engineering, Linköping Univ, 1998.

[11] Y. Gao, Q. Zhang, and X. Kong. Wavelet-based pressure analysis for hydraulic pump health diagnosis. Transactions of the ASAE, vol. 46, no. 4, pp. 969–976, 2003.

[12] M. Münchhof. Fehlerdiagnose für hydraulische Servo-Achsen (Fault Diagnosis for Hydraulic Servo Axes). at – Automatisierungstechnik, vol. 55, no. 2, 2007.

[13] A. Kazemi-Moghaddam. Fehlerfrühidentifikation unddiagnose eines elektrohydraulischen Linearantriebssystems. TU Darmstadt, 2000.

[14] C. Stammen. Condition Monitoring für intelligente hydraulische Linearantriebe. RWTH Aachen, Aachen, 2005.

[15] S. Richter and J. Weber. Sicherheit geregelter Antriebe der Fluidtechnik - Weiterentwicklung von Sicherheitskonzepten. Institut für Fluidtechnik, Dresden, Abschlussbericht FKM-Nr.: 702390, 2011.

[16] J. Schaab, M. Muenchhof, M. Vogt, and R. Isermann. IDENTIFICATION OF A HYDRAULIC SERVO-AXIS USING SUPPORT VECTOR MACHINES. IFAC Proceedings Volumes, vol. 38, no. 1, pp. 722–727, 2005.

[17] P. Garimella and B. Yao. Fault detection of an electrohydraulic cylinder using adaptive robust observers. ASME 2004 International Mechanical Engineering Congress and Exposition, pp. 119–128, 2004.

[18] K. Mollazade, H. Ahmadi, M. Omid, and R. Alimardani. Vibration-based fault diagnosis of hydraulic pump of tractor steering system by using energy technique. Modern Applied Science, vol. 3, no. 6, p. 59, 2009.

[19] E. Fischer, A. Sitte, J. Weber, E. Bergmann, and M. de la Motte. Performance of an electro-hydraulic active steering system. 10th International Fluid Power Conference (10. IFK) March 8 - 10, 2016 in Dresden, Dresden, 2016, vol. 1, pp. 375–386.

[20] L. Siivonen, M. Huova, and M. Vilenius. FAULT DETECTION AND DIAGNOSIS OF DIGITAL HYDRAULIC VALVE SYSTEM. The Tenth Scandinavian International Conference on Fluid Power, May 21-23, 2007 Tampere, Finland, Tampere, 2007.

[21] L. Siivonen, M. Linjama, M. Huova, and M. Vilenius. Pressure Based Fault Detection and Diagnosis of a Digital Valve System. Power Transmission and Motion Control (PTMC 2007), Bath, 2007, pp. 67–82.

[22] L. Siivonen, M. Linjama, M. Huova, and M. Vilenius. Jammed on/off Valve Fault Compensation with Distributed Digital Valve System. International Journal of Fluid Power, vol. 10, no. 2, pp. 73–82, 2009.

[23] M. Rannow. Fail Operational Controls for an Independent Metering Valve. 10th International Fluid Power Conference. Dresden: Dresdner Verein zur Förderung der Fluidtechnik e.V., 2016.

[24] DIN Deutsches Institut für Normung e.V. Sicherheit von Maschinen – Sicherheitsbezogene Teile von Steuerungen – Teil 2: Validierung (ISO 13849-2:2012), 2013.

Citations in Crossref