René Unger
EA EnergieArchitektur GmbH, Dresden, Germany
Torsten Schwan
Institute of Automotive Technologies Dresden - IAD, Dresden University of Technology Dresden, Germany
Beate Mikoleit
EA EnergieArchitektur GmbH, Dresden, Germany
Bernard Bäker
Institute of Automotive Technologies Dresden - IAD, Dresden University of Technology Dresden, Germany
Christian Kehrer
ITI GmbH, Dresden, Germany
Tobias Rodemann
Honda Research Institute Europå, Offenbach/Main, Germany
Download articlehttp://dx.doi.org/10.3384/ecp12076897Published in: Proceedings of the 9th International MODELICA Conference; September 3-5; 2012; Munich; Germany
Linköping Electronic Conference Proceedings 76:93, p. 897-906
Published: 2012-11-19
ISBN: 978-91-7519-826-2
ISSN: 1650-3686 (print), 1650-3740 (online)
For most people; a comfortable living and mobility are basic needs. With the rising individual demand for energy as well as the diminishing fossil energy resources; new optimized concepts for energy supply and usage are required. To address these challenges; renewable energy sources; decentralized storage; and electric mobility concepts are matters of rapidly growing importance.
Future building energy systems have to successfully integrate user demands; local renewable energy; storage systems and charging infrastructure; a task requiring extensive scrutinizing.
Typical questions to the engineer are to compare different system layouts with respect to sustainability; cost; and robustness; or to identify setscrews in an energy system to optimize components and control algorithms.
This paper describes an approach to solve such questions using simulations with the non-causal language Modelica. Modeling paradigms and examples are shown. Special emphasize is given to the “Green Building” library and its components; bringing major building energy systems and electric vehicles to the same platform.
[1] Schwan; T.; Unger; R.; Baeker; B.; Mikoleit; B.; Kehrer; C.: Optimization of local renewable energy systems using automotive simulation approaches. 12th Conference of International Building Performance Simulation Association; Sydney; 2011.
[2] Schwan; T.; Unger; R.; Baeker; B.; Mikoleit; B.; Kehrer; C.: Optimization-Tool for local renewable energy usage in the connected system: Building-eMobility. 8th Modelica Conference. Dresden; 2011.
doi: 10.3384/ecp11063189.
[3] Unger; R.; Schwan; T.; Mikoleit; B.; Baeker; B.: “Residence and Mobility” – Renewable Energy Management in the linked system “Building – eMobility”. 1st International Energy Efficient Vehicle Conference. Dresden; 2011.
[4] Unger; R.; Schwan; T.; Mikoleit; B.; Baeker; B.: Optimization-Tool for local renewable energy usage in the connected system: “Building - eMobility”. 13th ITI Symposium. Dresden; 2010.
[5] Chrisofakis; E.; Junghanns; A.; Kehrer; C.; Rink; A.: Simulation-based development of automotive control software with Modelica; 8th Modelica Conference; Dresden; 2011.
[6] Fritzon; P.: Principles of Object-Oriented Modeling and Simulation with Modelica 2.1. Wiley-IEE Press; 2003.
[7] SimulationX-Hompage of ITI GmbH. http://www.simulationx.com
[8] Wetter; M.; Zuo; W.; Nouidui; T. S.: Recent Developments of the Modelica “Buildings“ Library for Building Energy and Control Systems. 8th Modelica Conference. Dresden. 2011.
doi: 10.3384/ecp11063266.
[9] Kutter; S.; Langhammer; S.; Bäker; B.: eVehicleLib - Eine Modelica-Bibliothek zur Simulation von Fahrzeugen mit alternativen Antrieben; 20th Symposium Simulationstech-nik - ASIM 2009. Cottbus. 2009.
[10] Verordnung über energiesparenden Wärmeschutz und energiesparende Anlagentechnik bei Gebäuden - Energieeinsparverordnung; 2007.
[11] PVSol Hompage of The Solar Design Company. http://www.solardesign.co.uk/index.php.
[12] TRNSYS-Homepage of Transsolar. http://www.transsolar.com/__software/docs/trnsys/trnsys_uebersicht_de.htm