Conference article

Beyond Simulation

Francesco Casella
Politecnico di Milano, Dipartimento di Elettronica e Informazione, Italy

Filippo Donida
Politecnico di Milano, Dipartimento di Elettronica e Informazione, Italy

Marco Lovera
Politecnico di Milano, Dipartimento di Elettronica e Informazione, Italy

Download article;article=005

Published in: Proceedings of the 2nd International Workshop on Equation-Based Object-Oriented Languages and Tools

Linköping Electronic Conference Proceedings 29:5, s. 35-45

Show more +

Published: 2008-07-02

ISBN: 978-91-7519-823-1

ISSN: 1650-3686 (print), 1650-3740 (online)


After 20 years since their birth; equation-oriented and object-oriented modelling techniques and tools are now mature; as far as solving simulation problems is concerned. Conversely; there is still much to be done in order to provide more direct support for the design of advanced; modelbased control systems; starting from object-oriented plant models. Following a brief review of the current state of the art in this field; the paper presents some proposals for future developments: open model exchange formats; automatic model-order reduction techniques; automatic derivation of simplified transfer functions; automatic derivation of LFT models; automatic generation of inverse models for robotic systems; and support for nonlinear model predictive control.


Control system design; symbolic manipulation; model order reduction; CACSD


[1] OpenModelica home page. URL: http://www.ida. html.

[2] J. Åkesson. Optimica - An extension of Modelica supporting dynamic optimization. In Proceedings 6th International Modelica Conference; pages 57–66; Bielefeld; Germany; Mar. 3–4 2008.

[3] J. Åkesson and O. Slätteke. Modeling; calibration and control of a paper machine dryer section. In Proceedings 5th International Modelica Conference; pages 411–420; Vienna; Austria; Sep. 4–5 2006.

[4] M. Andersson; S. E. Mattsson; D. Brück; and T. Schöntal. OmSim - an integrated environment for object-oriented modelling and simulation. In Proceedings of the IEEE/IFAC Joint Symposium on Computer-Aided Control System Design; CACSD’94; pages 285–290; Tucson; Arizona; March 1994.

[5] P. Apkarian and R. J. Adams. Advanced Gain-Scheduling Techniques for Uncertain Systems. IEEE Transactions on Control System Technology; 6:21–32; 1998.

[6] P. I. Barton and C. C. Pantelides. The modeling of combined continuous and discrete processes. AIChE Journal; 40:966– 979; 1994.

[7] D.A. van Beek; M.A. Reniers; J.E. Rooda; and R.R.H. Schiffelers. Foundations of an interchange format for hybrid systems. In A. Bemporad; A. Bicchi; and G. Butazzo; editors; Computation and Control; 10th International Workshop; volume 4416 of Lecture Notes in Computer Science; pages 587–600. Springer Verlag; 2007.

[8] D.A. van Beek; M.A. Reniers; J.E. Rooda; and R.R.H. Schiffelers. Concrete syntax and semantics of the compositional interchangeformat for hybrid systems. In Proc. 17th IFAC World Congress; Seoul; Korea; Jul 6–11 2008.

[9] E. Carpanzano and C. Maffezzoni. Symbolic manipulation techniques for model simplification in object-oriented modelling of large scale continuous systems. Mathematics and Computers in Simulation; 48(2):133–150; 1998.

[10] F. E. Cellier and H. Elmqvist. Automated formula manipulation supports object-oriented continuous-system modeling. IEEE Control Systems Magazine; 13(2):28–38; 1993.

[11] H. Elmqvist; S. E. Mattsson; and H. Olsson. New methods for hardware-in-the-loop simulation of stiff models. In Proceedings 2nd International Modelica Conference; pages 59–64; Oberpfaffenhofen; Germany; Mar. 18–19 2002.

[12] H. Elmqvist; M. Otter; and F. Cellier. Inline integration: A new mixed symbolic /numeric approach for solving differential–algebraic equation systems. In Proc. ESM’95; European Simulation Multiconference; pages xxiii–xxxiv; Prague; Czech Republic; Jun. 5–8 1995.

[13] The Fraunhofer-Institut für Techno-und Wirtschaftsmathematik. Analog Insydes. URL: http://www.

[14] R. Franke. Formulation of dynamic optimization problems using modelica and their efficient solution. In Proceedings 2nd International Modelica Conference; pages 315–323; Oberpfaffenhofen; Germany; Mar. 18-19 2002.

[15] R. Franke; M. Rode; and K. Krüger. On-line optimization of drum boiler startup. In Proceedings 3rd International Modelica Conference; pages 287–296; Nov. 3–4 2003.

[16] P. Fritzson; P. Aronsson; A. Pop; H. Lundvall; K. Nyström; L. Saldamli; D. Broman; and A. Sandholm. OpenModelica - A free open-source environment for system modeling; simulation; and teaching. In Proceedings IEEE International Symposium on Computer-Aided Control Systems Design; Munich; Germany; Oct. 4–6 2006.

[17] T. Halfmann and T. Wichmann. Symbolic methods in industrial analog circuit design. In Scientific Computing in Electrical Engineering;Mathematics in Industry. Springer Verlag; 2006.

[18] S. Hecker and A. Varga. Symbolic manipulation techniques for low order LFT-based parametric uncertainty modelling. International Journal of Control; 79(11):1485–1494; 2006.

[19] L. Imsland; P. Kittilsen; and T. S. Schei. Model-basedoptimizing control and estimation using modelica models. In Proceedings 6th International Modelica Conference; pages 301–310; Bielefeld; Germany; Mar. 3–4 2008.

[20] H. K. Khalil. Nonlinear Systems. Prentice Hall; 3rd edition; 2002.

[21] L. Lee and K. Poolla. Identification of linear parametervarying systems using nonlinear programming. Journal of Dynamic Systems; Measurement and Control - Transactions of the ASME; 121(1):71–78; 1999.

[22] D. J. Leith and W. E. Leithead. Survey of gain-scheduling analysis and design. International Journal of Control; 73(11):1001–1025; 2000.

[23] M. Lovera and G. Mercere. Identification for gainscheduling: a balanced subspace approach. In 2007 American Control Conference; New York; USA; 2007.

[24] J. M. Maciejowski. Modelling and predictive control: enabling technologies for reconfiguration. Annual Reviews in Control; 23(1):13–23; 1999.

[25] J. M. Maciejowski. Predictive control: with constraints. Prentice Hall; 2002.

[26] C. Maffezzoni and R. Girelli. Modular modelling in an object-oriented database. Mathematical Modelling of Systems; 4:121–147; 1998.

[27] J.-F. Magni. Linear fractional representation toolbox. Technical Report TR 6/08162 DCSD; ONERA; 2004.

[28] A. Marcos and G. Balas. Development of linear-parametervarying models for aircraft. Journal of Guidance; Control and Dynamics; 27(2):218–228; 2004.

[29] S. E. Mattsson; M. Andersson; and K. J. Åström. Modeling and simulation of behavioral systems. In Proceedings of the 32nd IEEE Conference on Decision and Control; volume 4; pages 3636–3641; San Antonio; Texas; Dec. 1993.

[30] S. E. Mattsson; M. Andersson; and K. J. Åström. Objectoriented modelling and simulation. In D. Linkens; editor; CAD for Control Systems; pages 31–69. Marcel Dekker Inc.; New York; 1993.

[31] S. E. Mattsson and H. Elmqvist. Simulator for dynamicalsystems using graphics and equations for modeling. IEEE Control Systems Magazine; 9(1):53–58; Jan. 1989.

[32] S. E. Mattsson; H. Elmqvist; and M. Otter. Physical system modeling with Modelica. Control Engineering Practice; 6(4):501–510; 1998.

[33] M. Otter; H. Elmqvist; and S. E. Mattsson. The new Modelica MultiBody library. In Proceedings 3rd International Modelica Conference; pages 311–330; Linköping; Sweden; Nov. 3–4 2003. URL: events/Conference2003/papers/h37_Otter_ multibody.pdf.

[34] B. Paijmans;W. Symens; H. Van Brussel; and J. Swevers. A gain-scheduling-control technique for mechatronic systems with position-dependent dynamics. In Proceedings of the 2006 American Control Conference; Minneapolis; USA; 2006.

[35] A. Pop and P. Fritzson. ModelicaXML: A Modelica XML representation with applications. In Proceedings of the 3rd International Modelica Conference; pages 419–430; Linköping; Nov 3–4 2003.

[36] S. J. Qin and T. A. Badgwell. A survey of industrial model predictive control technology. Control Engineering Practice; 11:733–764; 2003.

[37] W. Rugh and J. Shamma. Research on gain scheduling. Automatica; 36(10):1401–1425; 2000.

[38] P. Schwarz; J. Bastians; C. Clauss; J. Haase; A. Köhler; G. Otte; and P. Schneider. A tool-box approach to computeraided generation of reduced-order models. In Proceedings EUROSIM 2007; 2007.

[39] L. Sciavicco and B. Siciliano. Modelling and Control of Robot Manipulators. Springer Verlag; 2000.

[40] R. Sommer; T. Halfmann; and J. Broz. Automated behavioral modeling and analytical model-order reduction by application of symbolic circuit analysis for multiphysical systems. In Proceedings of EUROSIM 2007; Ljubljana; Slovenia; Sep 9–13 2007.

[41] The Modelica Association. Modelica - A unified objectoriented language for physical systems modeling - Language specification version 3.0. Online; Sep. 5 2007. URL: documents/ModelicaSpec30.pdf.

[42] The World Wide Web Consortium. Mathematical Markup Language (MathML) Version 2.0. Online; Oct 21 2003. URL:

[43] J.J.M. van Helvoort; M. Steinbuch; P.F. Lambrechts; andR. van de Molengraft. Analytical and experimental modelling for gain-scheduling of a double scara robot. In Proceedings of the 3rd IFAC Symposium on Mechatronic Systems; Sydney; Australia; 2004.

[44] A. Varga; G. Looye; D. Moormann; and G. Gräbel. Automated generation of LFT-based parametric uncertainty descriptions from generic aircraft models. Mathematical and Computer Modelling of Dynamical Systems; 4(4):249– 274; 1988.

[45] V. Verdult. Nonlinear system identification: a state space approach. PhD thesis; University of Twente; 2002.

[46] K. Zhou; J. U. Doyle; and K. Glover. Robust and optimal control. Prentice-Hall; New Jersey; 1996.

Citations in Crossref