Conference article

Object-oriented sub-zonal room models for energy-related building simulation

Marco Bonvini
Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy

Alberto Leva
Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy

Download article

Published in: Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical Univeristy; Dresden; Germany

Linköping Electronic Conference Proceedings 63:31, p. 276-285

Show more +

Published: 2011-06-30

ISBN: 978-91-7393-096-3

ISSN: 1650-3686 (print), 1650-3740 (online)


Simulation is important to evaluate the energy-related performance of a building; and for reliable results; reproducing the behaviour of the contained air volumes is particularly relevant. For such a purpose; fully mixed models (i.e.; for instance; a single temperature per room) easily prove inadequate; while Computational Fluid Dynamics (CFD) ones are too complex; and difficult to formulate in a modular manner; to the detriment of their usefulness if the simulator has to be used throughout the project; and not only to assess its final result. This manuscript presents an intermediate solution based on the Modelica language.


Building simulation; energy optimisation; object-oriented modelling; modular modelling; scalable detail


[1] F. Allard; J. Brau; C. Inard; and J.M. Pallier. Thermal experiments of full-scale dwellings cells in artificial conditions. Energy and Buildings; 10:49–58; 1987. doi: 10.1016/0378-7788(87)90005-3.

[2] Q. Chen and W. Xu. A zero equation turbulence model for indoor airflow simulation. Energy and Buildings; 28(2):137–144; 1998. doi: 10.1016/S0378-7788(98)00020-6.

[3] B. Drury and B. Crawley. EnergyPlus: energy simulation program. ASHRAE Online Journal; 42(4):49–56; 2000.

[4] F. Allard F.; V.B. Dorer; and H.E. Feustel. Fundamentals of the multizone air flow model COMIS. AIVC (technical note 29); 1990.

[5] F. Felgner; S. Agustina; R. Caldera Bohigas; R.Merz; and L. Litz. Simulation of thermal building behaviour in Modelica. Oberpfaffenhofen; Germany; 2002.

[6] F. Felgner; R. Merz; and L. Litz. Modular modelling of thermal building behaviour using Modelica. Mathematical and computer modelling of dynamical systems; 12(1):35–49; 2006. doi: 10.1080/13873950500071173.

[7] H.E. Feustel. COMIS—An international multi-zone air-flow and contaminant transport model. Energy and Buildings; 30(1):3–18; 1999. doi: 10.1016/S0378-7788(98)00043-7.

[8] Fluent Inc. Fluent 6.1 tutorial guide. 2003.

[9] Fluent Inc. Fluent 6.3 user’s guide. 2003.

[10] F. Haghighat; Y. Li; and A.C. Megri. Development and validation of a zonal model - POMA. Building and Environment; 36(9):1039–1047; 2001. doi: 10.1016/S0360-1323(00)00073-1.

[11] C. Inard; H. Bouia; and P. Dalicieux. Prediction of air temperature distribution in buildings with a zonal model. Energy and Buildings; 24(2):125–132; 1996. doi: 10.1016/0378-7788(95)00969-8.

[12] M. Janak. Coupling building energy and lighting simulation. Kyoto; Japan; 2000.

[13] S.E. Mattsson; H. Elmqvist; and M. Otter. Physical system modeling with Modelica. Control Engineering Practice; 6:501–510; 1998. doi: 10.1016/S0967-0661(98)00047-1.

[14] L. Mora; A.J. Gadgil; and E. Wurtz. Comparing zonal and CFD model predictions of isothermal indoor airflows to experimental data. Indoor Air; 23(2):77–85; 2003. doi: 10.1034/j.1600-0668.2003.00160.x.

[15] S.V. Patankar. Numerical heat transfer and fluid flow. Taylor and Francis; London; UK; 1980.

[16] Z. Ren and J. Stewart. Simulating air flow and temperature distribution inside buildings using a modified version of COMIS with sub-zonal divisions. Energy and Buildings; 35(3):257–271; 2003. doi: 10.1016/S0378-7788(02)00087-7.

[17] A. Sodja and B. Zupancic. Modelling thermal processes in buildings using an object-oriented approach and Modelica. Simulation Modeling Practice and Theory; 17(6):1143 – 1159; 2009. doi: 10.1016/j.simpat.2009.04.003.

[18] The Modelica Association. Modelica home page.; 1997–2010.

[19] H.K. Versteeg and W. Malalasekera. An introduction to computational fluid dynamics: the finite volume method. Pearson Prentice Hall; Upper Saddle River; NJ; USA; 2007.

[20] G.N. Walton. CONTAM’96 users manual. NISTIR 6055; National Institute of Standards and Technology; 1997.

[21] M. Wetter. Multizone airflow model in Modelica. pages 431–440; Vienna; Austria; 2006.

[22] M. Wetter. Modelica-based modeling and simulation to support research and development in building energy and control systems. Journal of Building Performance Simulation; 2(1):143–161; 2009. doi: 10.1080/19401490902818259.

[23] M. Wetter. Modelica library for building heating; ventilation and air-conditioning systems. Como; Italy; 2009.

[24] D.C. Wilcox. Turbulence modeling for CFD; third edition. La Canada; DCW Industries; 2006.

[25] E. Wurtz; J.M. Nataf; and F. Winkelmann. Two and three-dimensional natural and mixed convection simulation using modular zonal models in buildings. International Journal of Heat and Mass Transfer; 42(5):923–940; 1999. doi: 10.1016/S0017-9310(98)00221-X.

Citations in Crossref