Conference article

Thermal Separation Library: Examples of Use

Karin Dietl
Hamburg University of Technology, Germany

Kilian Link
Siemens, Germany

Gerhard Schmitz
Hamburg University of Technology, Germany

Download article

Published in: Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical Univeristy; Dresden; Germany

Linköping Electronic Conference Proceedings 63:5, p. 28-38

Show more +

Published: 2011-06-30

ISBN: 978-91-7393-096-3

ISSN: 1650-3686 (print), 1650-3740 (online)


This paper deals with the Thermal Separation Library; which is intended to be used for absorption and rectification processes. Two example calculations show how the simulation speed can be increased by choosing the right way to set up the equations. One example refers to the ordering of the substances in the substance vector and one refers to the modelling of equilibrium processes. An example of use presented is the CO2 absorption in a post-combustion carbon capture plant. The transient simulation results are compared to measurement data obtained in a Siemens pilot plant.


Thermal separation; carbon capture; absorption / desorption


[1] Edward N. Fuller; Paul D. Schettler; and J. Calvin Giddings. A new method for predicition of binary gas-phase diffusion coefficients. Industrial and Engineering Chemistry; 58(5):19–27; May 1966.

[2] R. Gani; Thomas S. Jespen; and Eduardo S. Perez-Cisneros. A generalized reactive separation unit model. modelling and simulation aspects. Computers Chemical Engineering; 22(Supplement):363–370; 1998. doi: 10.1016/S0098-1354(98)00076-3.

[3] R. Gani; Esben L. Sorensen; and Jens Perregaard. Design and analysis of chemical processes through DYNSIM. Ind. Eng. Chem. Res.; 31:244–254; 1992. doi: 10.1021/ie00001a035.

[4] David Goldberg. What every computer scientist should know about floating-point arithmetic. ACM Computing Surveys; 23(1):5–48; March 1991. doi: 10.1145/103162.103163.

[5] P. Holl; W. Marquardt; and E. D. Gilles. DIVA - a powerful tool for dynamic process simulation. Computers chem. Engng; 12(5):421–426; 1988.

[6] Bernhard Hüpen and E. Kenig. Rigorose modellierung und simulation von chemisorptionsprozessen. Chemie Ingenieur Technik; 77(11):1792–1798; 2005. doi: 10.1002/cite.200500127.

[7] Tobias Jockenhoevel; Ruediger Schneider; and Helmut Rode. Development of an economic post-combustion carbon capture process. Energy Procedia; 1:1043–1050; 2009. doi: 10.1016/j.egypro.2009.01.138.

[8] Andreas Joos; Karin Dietl; and Gerhard Schmitz. Thermal separation: An approach for a modelica library for absorption; adsorption and rectification. In Francesco Casella; editor; Proceedings of the 7th International Modelica Conference; Linköping Electronic Conference Proceedings; pages 804–813. Linköping University Electronic Press; September 2009.

[9] E. Kenig. Complementary modelling of fluid separation process. Chemical Engineering Research and Design; 86:1059–1072; 2008. doi: 10.1016/j.cherd.2008.04.011.

[10] E. Kenig; Kaj Jakobsson; Peter Banik; Juhani Aittamaa; and Andrzej Gorak. An integrated tool for synthesis and design of reactive distillation. Chemical Engineering Science; 54:1347–1352; 1999. doi: 10.1016/S0009-2509(99)00071-8.

[11] Hendrik A. Kooijman. Dynamic Nonequilibrium Column Simulation. PhD thesis; Clarkson University; 1995.

[12] J. M. Le Lann; J. Albet; X. Joulia; and B. Koehret. A multipurpose dynamic simulation system for multicomponent distillation columns. Computer Applications in Chemical Engineering; pages 355–359; 1990.

[13] M. Oh and Constantinos C. Pantelides. A modelling and simulation language for combinend lumped and distributed parameter systems. Computers chem. Engng; 20(6/7):611–633; 1996.

[14] J. Antonio Rocha; J. L. Bravo; and J. R. Fair. Distillation columns containing structured packings: A comprehensive model for their performance 1. hydraulic models.Ind. Eng. Chem. Res.; 32:641–651; 1993. doi: 10.1021/ie00016a010.

[15] J. Antonio Rocha; J. L. Bravo; and J. R. Fair. Distillation columns containing structured packings: A comprehensive model for their performance. 2. mass transfer model. Ind. Eng. Chem. Res.; 35:1660–1667; 1996. doi: 10.1021/ie940406i.

[16] C. A. Ruiz; M. S. Basualdo; and N. J. Scenna. Reactive distillation dynamic simulation. Institution of Chemical Engineers; pages 363–378; 1995.

[17] M. Schenk; R. Gani; D. Bogle; and E. N. Pistikopoulos. A hybrid modelling approach for separation systems involving distillation. Trans IChemE; 77:519–534; 1999. doi: 10.1205/026387699526557.

[18] J. D. Seader. The rate-based approach for modeling staged separation. Chemical Engineering Progress; pages 41–49; 1989.

[19] M. S. Sivasubramanian and Joseph F. Boston. The heat and mass transfer rate-based approach for modeling multicomponent separation processes. Computer Applications in Chemical Engineering; pages 331–336; 1990.

[20] J. Stichlmair; J. L. Bravo; and J. R. Fair. General model for predicition or pressure drop and capacity of countercurrent gas/liquid packed columns. Gas Separation & Purification; 3:19–28; March 1989. doi: 10.1016/0950-4214(89)80016-7.

[21] Ross Taylor and Hendrik A. Kooijman. Composition derivatives of activity coefficient models. Chem. Eng. Comm.; 102:87–106; 1991. doi: 10.1080/00986449108910851.

[22] Ross Taylor and R. Krishna. Multicomponent mass transfer. John Wiley & Sons; Inc.; 1993.

[23] M. L. Winkel; L. C. Zullo; P. J. T. Verheijen; and Constantinos C. Pantelides. Modelling and simulation of the operation of an industrial batch plant using gPROMS. Computers chem. Engng; 19:571–576; 1995.

Citations in Crossref