Conference article

Real-Time Simulation of Vapour Compression Cycles

Christian Schulze
TLK-Thermo GmbH, Germany

Manuel Gräber
Technische Universität Braunschweig, Institut für Thermodynamik, Germany

Michaela Huhn
Technische Universität Clausthal, Institut für Informatik, Germany

Uwe Grätz
ITI GmbH, Germany

Download article

Published in: Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical Univeristy; Dresden; Germany

Linköping Electronic Conference Proceedings 63:7, p. 48-55

Show more +

Published: 2011-06-30

ISBN: 978-91-7393-096-3

ISSN: 1650-3686 (print), 1650-3740 (online)


This paper shows a tool chain of a set of ready-touse tools and libraries that enables the dynamic real-time simulation of vapour compression cycles. A new approach for calculation of fluid properties and numeric efficient component models are applied. As an Hardware in the Loop application a vapour compression cycle is exported to Scale -RT using SimulationX and connected to a hardware PI-Controller in order to realize a superheating control.


Real-Time Simulation; Vapour Compression Cycle; Tool Chain


[1] Trond Andresen. Mathematical modelica of CO2 based heat pumping systems. PhD thesis; Norwegian University of Science and Technology; 2009.

[2] Torsten Blochwitz and Thomas Beutlich. Real-time simulation of Modelica-based models. In Proc. 7th Modelica Conference; pages 386–392. The Modelica Association; 2009.

[3] Roberto Bucher and Silvano Balemi. Scilab/Scicos and Linux RTAI - A unified approach. In Proceedings of the IEEE Conference on Control Applications; Toronto; Canada; August 2005.

[4] COMEDI. Linux Control and Measurement Device Interface; 2011. URL .

[5] Cosateq GmbH & Co. KG. Scale-RT; 2010. URL .

[6] dSPACE GmbH. dSPACE; 2011. URL .

[7] Philippe Gerum. The XENOMAI Project - Implementing a RTOS emulation framework on GNU/Linux. Technical report; 2002.

[8] M. Gräber; K. Kosowski; C. Richter; and W. Tegethoff. Modelling of heat pumps with an object-oriented model library for thermodynamic systems. Mathematical and Computer Modelling of Dynamical Systems; 16: 195–209; 2010. doi: 10.1080/13873954.2010.506799.

[9] M. Gräber; N. C. Strupp; and W. Tegethoff. Moving Boundary Heat Exchanger Model and Validation Procedure. In EUROSIM Congress on Modelling and Simulation; Prague; 2010.

[10] F. P. Incropera; D. P. DeWitt; T. L. Bergman; and A. S. Lavine. Fundamentals of Heat and Mass Transfer. John Wiley & Sons US; 6th edition edition; 2006.

[11] ITI GmbH. SimulationX; 2010. URL .

[12] Matthias Kunick; Hans-Joachim Kretschmar; and Uwe Gampe. Fast Calculation of Thermodynamic Properties of Water and Steam in Process Modelling using Spline Interpolation. Proceedings of the 15h International Conference on the Properties of Water and Steam; 2008.

[13] Nicholas C. Lemke. Untersuchung zweistufiger Flüssigkeitskühler mit dem Kältemittel CO2. Number 73 in Forschungsberichte des Deutschen Kälte- und Klimatechnischen Vereins. Deutscher Kälte- und Klimatechnischer Verein; Holtzminden; 2005.

[14] E. W. Lemmon. Pseudo-Pure Fluid Equation of State for the Refrigerant Blends R-410A; R-404A; R-507A; and R-407C. International Journal of Thermophysics; Vol. 24; No. 4; 24; 2003. doi: 10.1023/A:1025048800563.

[15] M. O. McLinden; S. A. Klein; E. W. Lemmon; and A. P. Peskin. NIST thermodynamic and transport properties of refrigerants and refrigerant mixtures-REFPROP. 2008.

[16] National Instruments. NI VeriStand; 2011. URL

[17] OPAL-RT. RT-LAB; 2011. URL .

[18] Anand Pitchaikani; Kingsly Jebakumar S; Shankar Venkataraman; and S. A. Sundaresan. Real-time Drive Cycle Simulation of Automotive Climate Control System. In Proc. 7th Modelica Conference; pages 839–846. The Modelica Association; 2009.

[19] Christoph Richter. Proposal of New Object-Oriented Equation-Based Model Libraries for Thermodynamic Systems. PhD thesis; TU Braunschweig; 2008

[20] C. Schulze; M. Huhn; and M. Schüler. Profiling of Modelica Real-Time Models. In Proceedings of the 3rd International Workshop on Equation-Based Object-Oriented Modeling Languages and Tools; volume 3; pages 23–32; 2010.

[21] C. Schulze; W. Tegethoff; M. Huhn; and J. Köhler. Numerisch effiziente Berechnungsmethoden für die Stoffeigenschaften von Fluiden für die Systemsimulation. DKV-Tagungsberichte; 2010.

[22] N. C. Strupp; R. M. Kossel; W. Tegethoff; and J. Köhler. Senkung des Kraftstoffverbrauches durch Optimierung der Leerlaufklimatisierung eines PKW mittels Hybridkühlung. In DKV Tagung; 2010.

Citations in Crossref