Conference article

Models of a post-combustion absorption unit for simulation; optimization and non-linear model predictive control schemes

J. Åkesson
Modelon AB, Ideon Science Park, Lund, Sweden \ Department of Automatic Control, Lund University, Sweden

R. Faber
Vattenfall Research and Development AB, Berlin, Germany

C. D. Laird
Artie McFerrin Department of Chemical Engineering, Texas A&M University, U.S.A

K. Prölss
Modelon AB, Ideon Science Park, Lund, Sweden

H. Tummescheit
Modelon AB, Ideon Science Park, Lund, Sweden

S. Velut
Modelon AB, Ideon Science Park, Lund, Sweden

Y. Zhu
Artie McFerrin Department of Chemical Engineering, Texas A&M University, U.S.A

Download article

Published in: Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical Univeristy; Dresden; Germany

Linköping Electronic Conference Proceedings 63:9, p. 64-74

Show more +

Published: 2011-06-30

ISBN: 978-91-7393-096-3

ISSN: 1650-3686 (print), 1650-3740 (online)


An increasing demand on load flexibility in power supply networks is the motivation to look at flexible; and possibly optimal control systems for power plants with carbon capture units. Minimizing the energy demand for carbon dioxide removal under these circumstances reduces the cost disadvantage of carbon capture compared to conventional production. In this work a dynamic model in Modelica of a chemical absorption process run with an aqueous monoethanolamine (MEA) is developed; and used for solving optimal control problems. Starting from a rather detailed dynamic model of the process; model reduction is performed based on physical insight. The reduced model computes distinctly faster; shows similar transient behavior and reflects trends for optimal steady-state operations reported in the literature. The detailed model has been developed in Dymola; and the reduced model is used in JModelica. org; a platform supporting non-linear dynamic optimization. First results are shown on the dynamic optimization of the desorption column; the main cause of energy usage in the process.


CO<sub>2</sub>; absorption; model; optimization; nonlinear model predictive control; Modelica; Jmodelica; org


[1] Abu-Zahra MRM; Schneiders LHJ; Niederer JPM; Feron PHM; Versteeg GF. CO2 capture from power plants. Part II. A parametric study of the economical performance based on monoethanolamine. International Journal of Greenhouse Gas Control 2007;1:135-142. doi: 10.1016/S1750-5836(07)00032-1.

[2] Kvamsdal HM; Jakobsen JP; Hoff KA. Dynamic modeling and simulation of a CO2 absorber column for post-combustion CO2 capture. Chem Eng Process 2009;48:135-144. doi: 10.1016/j.cep.2008.03.002.

[3] Tobiesen FA; Juliussen O; Svendsen HF. Experimental validation of a rigorous stripper model for CO2 post-combustion capture. Chem Eng Sci 2008;63:2641-2656. doi: 10.1016/j.ces.2008.02.011.

[4] Freguia S; Rochelle GT. Modeling of CO2 capture by aqueous monoethanolamine. AIChE Journal 2003;49(7):1676-1686. doi: 10.1002/aic.690490708.

[5] Ziaii S; Rochelle GT; Edgar TF. Dynamic modeling to minimize energy use for CO2 capture in power plants by aqueous monoethanolamine. Ind Eng Chem Res 2009;48:6105–6111. doi: 10.1021/ie801385q.

[6] Panahi M; Karimi M; Skogestad S; Hillestad M; Svendsen HF. Self-optimizing and control structure design for a CO2 capturing plant. In: Eljack FT; Rex Reklaitis GV; El-Hawagi MM; editors. Proceedings of the 2nd Annual Gas Processing Symposium; Qatar 2010.

[7] Qin SJ; Badgwell TA. A survey of industrial model predictive control technology. Control Engineering Practice 2003;11: 733-764. doi: 10.1016/S0967-0661(02)00186-7.

[8] Åkesson; J.; Årzén; K.-E.; Gäfvert; M.; Bergdahl; T.; & Tummescheit; H. Modeling and Optimization with Optimica and—Languages and Tools for Solving Large-Scale Dynamic Optimization Problem. Computers and Chemical Engineering 2010. d doi: 10.1016/j.compchemeng.2009.11.011.

[9] Åkesson; J. Optimica-an extension of Modelica supporting dynamic optimization. 6th International Modelica Conference 2008.

[10] Biegler LT; Cervantes A; Wächter A. Advances in simultaneous strategies for dynamic optimization. Chemical Engineering Science 2002;57:575-593. doi: 10.1016/S0009-2509(01)00376-1.

[11] Wächter A; Biegler LT. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming ; 2006;106 (1); 25-58. doi: 10.1007/s10107-004-0559-y.

[12] Python Software Foundation. Python Home Page. Retrieved from; 2010.

[13] Kim I; Hesssen ET; Haug-Warberg T; Svendsen HF. Enthalpies of Absorption of CO2 in Aqueous Alkanolamine Solutions from e-NRTL Model. Energy Procedia 2009;1:829-835. doi: 10.1016/j.egypro.2009.01.110.

[14] Böttinger W. NMR-spektroskopische Untersuchung der Reaktivabsorption von Kohlendioxid in wässrigen Aminlösungen. Dissertation. Universität Stuttgart; 2005

[15] Onda K; Takeuchi H; Okumoto Y. Mass transfer coefficients between gas and liquid packed columns J Chem Eng Jpn 1968;1(1):56-62. doi: 10.1252/jcej.1.56.

[16] Versteeg GF; van Dijck LAJ; van Swaaij WPM. On the kinetics between CO2 and alkanolamines both in aqueous and non-aqueous solutions. An overwiew. Chem Eng Commun 1996;144:113-158. doi: 10.1080/00986449608936450.

[17] Poling BE; Prausnitz JM; O’Connell JP. The properties of gases and liquids. 5th edition. New York: McGraw-Hill;2001

[18] Weiland RH; Dingmann JC; Cronin DB; Browning GJ. Density and Viscosity of Some Partially Carbonated Aqueous Alkanolamine Solutions and Their Blends. J. Chem. Eng. Data 1998;43(3):378–382. doi: 10.1021/je9702044.

[19] Faber R; Köpcke M; Biede O; Nygaard-Knudsen J; Andersen J. Open-loop step responses for the MEA post-combustion capture process: Experimental results from the Esbjerg pilot plant. Proceedings of the GHGT-10 conference 2010.

[20] Franke; R. Doppelhamer; J.; Online Application of Modelica Models in the Industrial IT Extended Automation System 800xA; Proceedings of 5th International Modelica Conference; 2006; Vienna; Austria.

Citations in Crossref