Conference article

Detailed geometrical information of aircraft fuel tanks incorporated into fuel system simulation models

Ingela Lind
SAAB Aeronautics, Linköping, Sweden

Alexandra Oprea
SAAB Aeronautics, Linköping, Sweden

Download article

Published in: Proceedings of the 9th International MODELICA Conference; September 3-5; 2012; Munich; Germany

Linköping Electronic Conference Proceedings 76:34, p. 333-338

Show more +

Published: 2012-11-19

ISBN: 978-91-7519-826-2

ISSN: 1650-3686 (print), 1650-3740 (online)


Fuel tanks in fighter aircraft have an irregular shape which is given by a detailed CAD model. To simulate a fuel system with sufficient amount of detail to solve the design issues; necessary geometrical information need to be given in a compact and computationally fast form. A function approximation using radial basis functions is suggested; analyzed and compared with some other methods. The complete process from production scale CAD model to system simulation model is considered.


aircraft design; fuel systems simulation; geometrical representation; surrogate model; radial basis functions


[1] Gavel. H. (2007) On Aircraft Fuel Systems – Conceptual Design and Modeling. Dissertation No.1067; Division of Machine Design; Department of Mechanical Engineering; Linköpings University. ISBN 978-91-85643-04-2

[2] Lind. I. & Andersson. H. (2011) Model Based Systems Engineering for Aircraft Systems – How does Modelica Based Tools Fit? In proceedings of the 8th International Modelica Conference; Dresden; 2011

[3] Steinkellner S.; Andersson H.; Gavel H. and Krus P. Modeling and simulation of Saab Gripen’s vehicle systems; AIAA Modeling and Simulation Technologies Conference; Chicago; USA; AIAA 2009-6134; 2009

[4] Wikström J.; 3D Model of Fuel Tank for System Simulation: A methodology for combining CAD models with simulation tools; Masters thesis LIU-IEI-TEK-A—11/01201—SE; Linköpings University; 2011;

[5] Buhmann; M. D. Radial Basis Functions; Acta Numerica (2000) 1—38. doi: 10.1017/S0962492900000015.

[6] Chen. S.; Billings. S.A. & Lou. W. (1989) Orthogonal least squares methods and their application to non-linear system identification. Internal Journal of Control; 50:5; 1873-1896. doi: 10.1080/00207178908953472.

[7] Chen. S.; Billings. S.A.; Cowan. C.F.N. & Grant. P.M. (1990) Practical identification of NARMAX models using radial basis functions. Internal Journal of Control; 52:6; 1327-1350. doi: 10.1080/00207179008953599.

[8] Boyd; J.P.; Six strategies for defeating the Runge Phenomenon in Gaussian radial basis functions on a finite interval. Computers and Mathematics with Applications; 60 (2010); 3108-3122. doi: .

Citations in Crossref