Conference article

HelmholtzMedia — A Fluid Properties Library

Matthis Thorade
Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Germany

Ali Saadat
Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Germany

Download article

Published in: Proceedings of the 9th International MODELICA Conference; September 3-5; 2012; Munich; Germany

Linköping Electronic Conference Proceedings 76:6, p. 63-70

Show more +

Published: 2012-11-19

ISBN: 978-91-7519-826-2

ISSN: 1650-3686 (print), 1650-3740 (online)


HelmholtzMedia is a library for the calculation of fluid properties. It is implemented in Modelica and published under the Modelica license. All thermodynamic state properties and their partial derivatives are calculated from a Helmholtz energy equation of state. Further properties that can be calculated include surface tension; viscosity and thermal conductivity.


fluid properties; equation of state; Helmholtz energy; partial derivatives; surface tension; viscosity; thermal conductivity


[1] R. Akasaka. “A Reliable and Useful Method to Determine the Saturation State from Helmholtz Energy Equations of State”. In: Journal of Thermal Science and Technology 3.3 (2008); pp. 442–451. doi: 10.1299/jtst.3.442.

[2] H. D. Baehr. “Thermodynamische Fundamentalgleichungen und charakteristische Funktionen”. In: Forschung im Ingenieurwesen 64.1 (1998); pp. 35–43. doi: 10.1007/PL00010764.

[3] R. Brent. Algorithms for minimization without derivatives. Prentice-Hall; 1973.

[4] H. Elmqvist; H. Tummescheit; and M. Otter. “Object-oriented modeling of thermo-fluid systems”. In: Proceedings of the 3rd International Modelica Conference. 2003; pp. 269–286.

[5] E. W. Lemmon; M. L. Huber; and M. O. McLinden. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties - REFPROP. 9.0. National Institute of Standards and Technology; Standard Reference Data Program. Gaithersburg; 2010.

[6] G. R. Somayajulu. “A generalized equation for surface tension from the triple point to the critical point”. In: International Journal of Thermophysics 9.4 (1988); pp. 559–566. doi: 10.1007/BF00503154.

[7] R. Span. Multiparameter equations of state: an accurate source of thermodynamic property data. Springer Verlag; 2000. doi: 10.1007/978-3-662-04092-8.

[8] R. Span; W. Wagner; E. W. Lemmon; and R. T. Jacobsen. “Multiparameter equations of state — recent trends and future challenges”. In: Fluid Phase Equilibria 183-184.1-2 (2001); pp. 1–20. doi: 10.1016/S0378-3812(01)00416-2.

[9] M. Thorade. HelmholtzMedia. 2012. URL: https : / / github . com / thorade / HelmholtzMedia/.

[10] M. Thorade and A. Saadat. “Partial derivatives of thermodynamic state properties for dynamic simulation”. In: will be submitted to: Environmental Earth Sciences (2012).

[11] H. Tummescheit. Ticket 85: Re-design and simplification of Modelica.Media. 2008. URL:

[12] W. Wagner. Eine mathematisch statistische Methode zum Aufstellen thermodynamischer Gleichungen — gezeigt am Beispiel der Dampfdruckkurve reiner fluider Stoffe. Vol. 3. Fortschrittberichte der VDI Zeitschriften 39. VDI Verlag; 1974.

[13] W. Wagner and A. Pruß. “The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use”. In: Journal of Physical and Chemical Reference Data 31.2 (2002); pp. 387–535. doi: 10.1063/1.1461829.

Citations in Crossref