Conference article

Modeling a Low-temperature Compressed Air Energy Storage with Modelica

Marcus Budt
Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT, Oberhausen, Germany

Daniel Wolf
Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT, Oberhausen, Germany

Roland Span
Ruhr-University Bochum, Faculty for Mechanical Engineering, Bochum, Germany

Download articlehttp://dx.doi.org/10.3384/ecp12076791

Published in: Proceedings of the 9th International MODELICA Conference; September 3-5; 2012; Munich; Germany

Linköping Electronic Conference Proceedings 76:81, s. 791-800

Show more +

Published: 2012-11-19

ISBN: 978-91-7519-826-2

ISSN: 1650-3686 (print), 1650-3740 (online)

Abstract

The paper deals with the modeling of low-temperature compressed air energy storage. Aim of the modeling effort is to dynamically simulate the plant and analyzing the thermodynamics of the system. Here; off-design behavior regarding turbomachinery output temperatures; pressure losses and heat flows is of particular interest. Combined with an economical optimization tool; the presented model will be used to find an optimized plant layout.

Keywords

compressed air; energy storage; thermal storage; low-temperature; CAES; modeling; Modelica

References

[1] Wolf D.: Methods for Design and Application of Adiabatic Compressed Air Energy Storage Based on Dynamic Modeling. Bochum; Germany: PhD thesis; Ruhr-Universität Bochum; 2010; UMSICHTSchriftenreihe 65; urn:nbn:de:0011-n-1546519; 2011.

[2] Marquardt R.; Hoffmann S.; Pazzi S.; Klafki M.; Zunft S.: AA-CAES – Opportunities and challenges of advanced adiabatic compressed air energy storage technology as a balancing tool in interconnected grids. In: 40. Kraftwerkstechnisches Kolloquium 2008; Vol. 2; Technische Universität Dresden (Ed.); 2008.

[3] Budt M.; Wolf D.; Prümper H.-J.: A Low-temperature approach to Adiabatic Compressed Air Energy Storage. Proceedings of 12th International Conference on Energy Storage - INNOSTOCK; Lleida; Spain; 2012.

[4] Casella F.; Otter M.; Proelss K.; Richter Ch.; Tummescheit H.: The Modelica Fluid and Media library for modeling of incompressible and compressible thermo-fluid pipe networks. Proceedings of 5th International Modelica Conference; Vienna; Austria; 2006.

[5] Dassault Systèmes; Dymola 2012 FD01.

[6] Moustapha H.; Zelesky M.F.; Baines N.C.; Japikse D.: Axial and Radial Turbines. Concepts NREC (Ed.); 2003.

[7] Bloch H.; Soares C.: Turboexpanders and process application. Butterworth-Heinemann (Ed.); 2001.

[8] Wolf D.; Kanngießer A.; Budt M.; Dötsch Ch.: Adiabatic Compressed Air Energy Storage co-located with wind energy – multifunctional storage commitment optimization for the German market using GOMES. In: Energy Systems; Vol. 3; Issue 2; 2012.

Citations in Crossref