Conference article

Visual Ontology Alignment System - An Evaluation

Vedran Sabol
Know-Center, Graz, Austria

Weng Onn Kow
Artificial Intelligence Centre, MIMOS Berhad, Technology Park Malaysia, Kuala Lumpur, Malaysia

Manuela Rauch
Know-Center, Graz, Austria

Eva Ulbrich
Know-Center, Graz, Austria

Christin Seifert
Faculty of Computer Science and Mathematics, Passau University, Passau, Germany

Michael Granitzer
Faculty of Computer Science and Mathematics, Passau University, Passau, Germany

Dickson Lukose
Artificial Intelligence Centre, MIMOS Berhad, Technology Park Malaysia, Kuala Lumpur, Malaysia

Download article

Published in: Proceedings of SIGRAD 2012; Interactive Visual Analysis of Data; November 29-30; 2012; Växjö; Sweden

Linköping Electronic Conference Proceedings 81:3, p. 9-18

Show more +

Published: 2012-11-20

ISBN: 978-91-7519-723-4

ISSN: 1650-3686 (print), 1650-3740 (online)


Ontology alignment is the process of mapping related concepts from different ontologies. A lot of research effort has been invested in development of algorithmic methods supporting automatic discovery of mappings between ontological concepts. However; automatic alignment remains potentially prone to errors especially with large real-world ontologies; demanding intervention of domain experts. We therefore created a semi-automatic tool including algorithmic alignment methods and an interactive visual interface. Visualisation components included in the interface support experts in navigating the concept space and reviewing the automatically generated mapping suggestions. An experiment with 15 test users was performed to evaluate whether; and in which cases the use of visualisation is beneficial compared to a user interface employing standard GUI widgets. The results indicate that users typically executed tasks slightly faster with an interface using standard widgets; but an interface which includes a visualisation component providing overview; filter and narrowing-down functionality achieved higher rates of successful task completion.


User H.5 [Information Interfaces and Presentation]: User Interfaces—User-centered design


[ADMR05] AUMUELLER D.; DO H.-H.; MASSMANN S.; RAHM E.: Schema and ontology matching with coma++; June 2005. In Proceedings of the ACM SIGMOD. 10

[Aur91] AURENHAMMER F.: Voronoi diagrams - a survey of a fundamental geometric data structure. ACM Computing Surveys (1991); 345–405. 11
[CDD02] CARROLL J. J.; DICKINSON I.; DOLLIN C.; REYNOLDS D.; SEABORNE A.; WILKINSON K.: Jena - A Semantic Web Framework for Java. http://jena.; 2002. 10

[CSMB07] CRUZ I.; SUNNA W.; MAKAR N.; BATHALA S.: A visual tool for ontology alignment to enable geospatial interoperability. Journal of Visual Languages and Computing (2007); 230–254. 10

[dSDdMR06] DE SOUZA K. X. S.; DAVIS J.; DE MEDEIROS E.; ROBERTO S.: Aligning ontologies; evaluating concept similarities and visualizing results. Journal on Data Semantics V (2006); 211–236. 10

[EBJ06] EBBELS T. M. D.; BUXTON B. F.; JONES D. T.: springscape: visualisation of microarray and contextual bioinformatic data using spring embedding and an ’information landscape’. Bioinformatics 22 (2006); 99–107. 10

[ELBB04] EUZENAT J.; LE BACH T.; BARRASA J.; BOUQUET P.; DE BO J.; DIENG R.; EHRIG M.; HAUSWIRTH M.; JARRAR M.; LARA R.; MAYNARD D.; NAPOLI A.; STAMOU G.; STUCKENSCHMIDT H.; SHVAISKO P.; TESSARIS S.; VAN ACKER S.; ZAIHRAYEU I.: State of the art on ontology alignment; 2004. Deliverable of the Knowledge Web Project (IST-2004-507482); Knowledge Web Consortium. 9

[ES07] EUZENAT J.; SHVAIKO P.: Ontology matching; 2007. 9

[FBG09] FALCONER S.; BULL R.; GRAMMEL L.AND STOREY M.-A.: Creating visualizations through ontology mapping; March 2009. In Proceedings of the 2nd International Workshop on Ontology Alignment and Visualization. 10

[FNS06] FALCONER S.; NOY N.; STOREY M.-A.: Towards understanding the needs of cognitive support for ontology mapping. In Proceedings of the Ontology Matching Workshop (5th International Semantic Web Conference) (2006); pp. 25–36. 10

[FNS07] FALCONER S.; NOY N.; STOREY M.-A.: Ontology mapping - a user survey. In Proceedings of the Workshop on Ontology Matching (OM2007) at ISWC/ASWC2007 (2007); pp. 113–U? 125. 10

[FR91] FRUCHTERMAN T.; REINGOLD E.: Graph drawing by force-directed placement. Software – Practice & Experience (Wiley) (1991); 1129–1164. 11

[FS07] FALCONER S.; STOREY M.-A.: A cognitive support framework for ontology mapping; November 2007. In Proceedings of International Semantic Web Conference. 10

[GKS04] GRANITZER M.; KIENREICH W.; SABOL V.; ANDREWS K.; KLIEBER W.: Evaluating a system for interactive exploration of large; hierarchically structured document repositories. In Proceedings of the IEEE Symposium on Information Visualization (InfoVis ’04) (2004); IEEE Computer Society; pp. 127– 134. 13

[GS08] GAL A.; SHVAIKO P.: Advances in ontology matching. In Advances in Web Semantics I: Ontologies; Web Services and Applied Semantic Web. Springer; 2008; pp. 176–U? 198. 9

[GSK10] GRANITZER M.; SABOL V.; KOW W. O.; LUKOSE D.; TOCHTERMANN K.: Ontology alignment - a survey with focus on visually supported semi-automatic techniques. Future Internet 2; 3 (2010); 238–258. 10; 12

[KD08] KOLLI R.; DOSHI P.: Optima: Tool for ontology alignment with application to semantic reconciliation of sensor metadata for publication in sensormap; August 2008. In Proceedings of the second IEEE International Conference on Semantic Computing. 10

[KL08] KOTIS M.; LANZENBERGER M.: Ontology matching: Status and challenges. IEEE Intelligent Systems 23 (2008); 84– 85. 9

[KSG11] KOW W. O.; SABOL V.; GRANITZER M.; KIENREICH W.; LUKOSE D.: A visual soa-based ontology alignment tool. In Proceedings of the Sixth International Workshop on Ontology Matching (OM 2011) (2011). 10

[KSM09] KLIEBER W.; SABOL V.; MUHR M.; KERN R.; ÖTTL G.; GRANITZER M.: Knowledge discovery using the knowminer framework; iads. In IADIS International Conference Information Systems (2009); pp. 307–314. 11

[LS06] LANZENBERGER M.; SAMPSON J.: Alviz - a tool for visual ontology alignment. In In IV ’06: Proceedings of the conference on Information Visualization (2006); IEEE Computer Society; pp. 430–440. 10

[LSR08] LANZENBERGER M.; SAMPSON J.; RESTER M.; NAUDET Y.; LATOUR T.: Visual ontology alignment for knowledge sharing and reuse. J. Knowledge Management 12; 6 (2008); 102–120. 10

[MSG10] MUHR M.; SABOL V.; GRANITZER M.: Scalable recursive top-down hierarchical clustering approach with implicit model selection for textual data sets. In 7th International Workshop on Text-based Information Retrieval in Proceedings of 21th International Conference on Database and Expert Systems Applications (DEXA 10) (2010). 11

[NM03] NOY N.; MUSEN M.: The prompt suite: Interactive tools for ontology merging and mapping. International Journal of Human Computer Studies 59 (2003); 983–1024. 10

[OAE11] Ontology Alignment Evaluation Initiative. //oaei.; 2011. 9; 12; 15

[PM00] PELLEG D.; MOORE A.: X-means: Extending k-means with efficient estimation of the number of clusters; 2000. 11

[Rah11] RAHM E.: Towards large-scale schema and ontology matching. In Schema Matching and Mapping. Springer; 2011; pp. 3–27. 9

[Shn91] SHNEIDERMAN B.: Tree visualization with tree-maps: A 2-d space-filling approach. ACM Transactions on Graphics 11 (1991); 92–99. 10

[SKM09] SABOL V.; KIENREICH W.; MUHR M.; KLIEBER W.; GRANITZER M.: Visual knowledge discovery in dynamic enterprise text repositories; 2009. 12; 14

[TC05] THOMAS J.; COOK K. (Eds.): Illuminating the Path: The Research and Development Agenda for Visual Analytics. IEEE Computer Society; August 2005. National Visualization and Analytics Center. 10

[UGM07] UDREA O.; GETOOR L.; MILLER J.: Homer: Ontology alignment visualization and analysis. In 6th International and 2nd Asian Semantic Web Conference (ISWC2007+ASWC2007) (November 2007); pp. 111–112. 10

[Uni10] UNIVERSITY P.: About wordnet. http://wordnet.; 2010. 11

[W3C09] W3C: Allegrograph rdfstore web 3.0’s database.; September 2009. 10

[WP94] WU Z.; PALMER M.: Verb semantics and lexical selection; 1994. Proceedings 32nd Annual Metting of the Association for Computational Linguistics (ACL). 11

Citations in Crossref