Conference article

A Comparison of Volumetric Illumination Methods by Considering their Underlying Mathematical Models

Neda Rostamzadeh
Scientific Visualization Group, Linköping University, Sweden

Daniel Jönsson
Scientific Visualization Group, Linköping University, Sweden

Timo Ropinski
Scientific Visualization Group, Linköping University, Sweden

Download article

Published in: Proceedings of SIGRAD 2013; Visual Computing; June 13-14; 2013; Norrköping; Sweden

Linköping Electronic Conference Proceedings 94:5, p. 35-40

Show more +

Published: 2013-11-04

ISBN: 978-91-7519-455-4

ISSN: 1650-3686 (print), 1650-3740 (online)

Abstract

In this paper; we study and analyze seven state-of-the-art volumetric illumination methods; in order to determine their differences with respect to the underlying theoretical mathematical models and numerical problems potentially arising during implementation. The chosen models are half angle slicing; directional occlusion shading; multidirectional occlusion shading; shadow volume propagation; spherical harmonic lighting; dynamic ambient occlusion and progressive photon mapping. We put these models into a unified mathematical framework; which allows them to be compared among each other as well as to the global volume rendering equation. We will discuss the mathematical differences of the compared models and describe the numerical implications of the simplifications made by each method.

Keywords

No keywords available

References

[GJJD09] GUTIERREZ D.; JENSEN H. W.; JAROSZ W.; DONNER C.: Scattering. In ACM SIGGRAPH Courses Program (2009). 2

[HLY07] HERNELL F.; LJUNG P.; YNNERMAN A.: Efficient Ambient and Emissive Tissue Illumination using Local Occlusion in Multiresolution Volume Rendering. In IEEE/EG Volume Graphics (2007). 2

[HOJ08] HACHISUKA T.; OGAKI S.; JENSEN H. W.: Progressive photon mapping. ACM Trans. Graph. 27; 5 (Dec. 2008); 130:1–130:8. 1; 4

[HWSB99] HUBONA G. S.; WHEELER P. N.; SHIRAH G. W.; BRANDT M.: The relative contributions of stereo; lighting; and background scenes in promoting 3d depth visualization. ACM Trans. Comput.-Hum. Interact. 6; 3 (1999); 214–242. 2

[Jar08] JAROSZ W.: Efficient Monte Carlo Methods for Light Transport in Scattering Media. PhD thesis; UC San Diego; sep 2008. 2

[JC98] JENSEN H. W.; CHRISTENSEN P. H.: Efficient simulation of light transport in scences with participating media using photon maps. In Proceedings of the 25th annual conference on Computer graphics and interactive techniques (New York; NY; USA; 1998); SIGGRAPH ’98; ACM; pp. 311–320. 2

[Jen96] JENSEN H. W.: Global illumination using photon maps. In Rendering Techniques (1996); Springer-Verlag; pp. 21–30. 4

[JSYR13] JÖNSSON D.; SUNDÉN E.; YNNERMAN A.; ROPINSKI T.: A Survey of Volumetric Illumination Techniques for Interactive Volume Rendering. Computer Graphics Forum (conditionally accepted) (2013). 1; 2

[KFC10] K?R IVÁNEK J.; FAJARDO M.; CHRISTENSEN P. H.; TABELLION E.; BUNNELL M.; LARSSON D.; KAPLANYAN A.: Global Illumination Across Industries. In ACM SIGGRAPH Courses Program (2010). 2

[KJL12] KRONANDER J.; JÖNSSON D.; LÖW J.; LJUNG P.; YNNERMAN A.; UNGER J.: Efficient visibility encoding for dynamic illumination in direct volume rendering. Visualization and Computer Graphics; IEEE Transactions on 18; 3 (2012); 447–462. 1; 5

[KPHE02] KNISS J.; PREMOZE S.; HANSEN C.; EBERT D.: Interactive translucent volume rendering and procedural modeling. In In Proceedings of IEEE Visualization 2002 (2002); pp. 109–116. 1; 2; 3

[KZ11] KNAUS C.; ZWICKER M.: Progressive photon mapping: A probabilistic approach. ACM Trans. Graph. 30; 3 (May 2011); 25:1–25:13. 4

[LR11] LINDEMANN F.; ROPINSKI T.: About the influence of illumination models on image comprehension in direct volume rendering. IEEE TVCG(Vis Proceedings) 17; 12 (2011); 1922–1931. 1; 2

[PM08] PENNER E.; MITCHELL R.: Isosurface ambient occlusion and soft shadows with filterable occlusion maps. In Proceedings of the Fifth Eurographics / IEEE VGTC conference on Point-Based Graphics (2008); SPBG’08; pp. 57–64. 2

[RDRS10] ROPINSKI T.; DORING C.; REZK-SALAMA C.: Interactive volumetric lighting simulating scattering and shadowing. In Pacific Visualization Symposium (PacificVis); 2010 IEEE (2010); pp. 169–176. 1; 3; 5

[RMSD08] ROPINSKI T.; MEYER-SPRADOW J.; DIEPENBROCK S.; MENSMANN J.; HINRICHS K. H.: Interactive volume rendering with dynamic ambient occlusion and color bleeding. Computer Graphics Forum (Eurographics 2008) 27; 2 (2008); 567–576. 1

[SHB08] SCHOTT M.; HANSEN C.; BOULANGER K.; STRATTON J.; BOUATOUCH K.; SCHOTT M.; PEGORARO V.; HANSEN C.; BOULANGER K.; STRATTON J.; BOUATOUCH K.: A directional occlusion shading model for interactive direct volume rendering; 2008. 1

[SPBV10] SOLTÉSZOVÁ V.; PATEL D.; BRUCKNER S.; VIOLA I.: A multidirectional occlusion shading model for direct volume rendering. Comput. Graph. Forum 29; 3 (2010); 883–891. 1; 5

[Ste03] STEWART A. J.: Vicinity shading for enhanced perception of volumetric data. In IEEE Visualization (October 2003). 2

[WFG92] WANGER L.; FERWERDA J.; GREENBERG D.: Perceiving spatial relationships in computer-generated images. Computer Graphics and Applications; IEEE 12; 3 (1992); 44–58. 2

[ZC02] ZHANG C.; CRAWFIS R.: Volumetric shadows using splatting. In Visualization; 2002. VIS 2002. IEEE (2002); pp. 85–92. 2

Citations in Crossref