Juliane Weber
Institute of Fluid Power, Dresden University of Technology, Dresden, Germany
Jürgen Weber
Institute of Fluid Power, Dresden University of Technology, Dresden, Germany
Download articlehttp://dx.doi.org/10.3384/ecp1392a14Published in: 13th Scandinavian International Conference on Fluid Power; June 3-5; 2013; Linköping; Sweden
Linköping Electronic Conference Proceedings 92:14, p. 131-140
Published: 2013-09-09
ISBN: 978-91-7519-572-8
ISSN: 1650-3686 (print), 1650-3740 (online)
Beside drive tasks for feeding movements and tool clamping; fluid power systems especially permit the temperature control in machine tools: They allow cooling or pre-heating of both single components and complete assemblies (e.g. frame components; drive motors and spindles). In this respect; fluid power systems are an important element for controlling and managing the thermo-elastic behavior of machine tools. As an essential part of the machine; they must be included from the beginning of the design studies of machine tools -- particularly in terms of accuracy under conditions of energy-efficient manufacturing.
The increasing complexity and performance of fluid power systems generally lead to an increased use of auxiliary power. This has to be critically examined from an economic and environmental point of view. Focusing especially on the optimum thermal performance with minimum power supply; existing simulation models are not suitable for a scientifically based design. The complex system structures as well as the lack of basic investigations and design tools lead to a thermal optimization problem that is not solved satisfactorily today. For this purpose the Institute of Fluid Power (IFD) develops principles and simulation models with a holistic approach.
Based on the analysis of general tooling machines fluidic subsystems are identified and essential modeling requirements are specified. From a fluid-technical perspective the motor spindle represents an important principal component; and therefore; is a particular focus of current investigations. Starting from the basic technical structure of the motor spindles an abstract model is derived. This model represents the basis for different simulation strategies such as network-based or numerical ones. To study the thermal behavior of cooling sleeves in motor spindles -- especially with regard to the parameter identification and the validation of simulation models -- a test rig was developed. The modular construction of the test rig ensures a simple replacement of the cooling sleeve allowing the examination of different flow geometries
Heat transfer; high-speed spindle; numerical simulation; network-based simulation
[1] R. Walter. Mit direkter Kühlung zu mehr Genauigkeit. Werkstatt und Betrieb; 139(6):129-130; 2006
[2] I. S. Javelov. Projektierung von Kühlsystemen für Elektrospindeln. Stanki i Instrument; 54(4):25-26; 1983.
[3] R. L. Judd; K. Aftab; M. A. Elbestawi. An Investigation of the Use of Heat Pipes for Machine Tool Spindle Bearing Cooling. International Journal of Machine Tools and Manufacture; 34(7): 1031-1043; 1994.
[4] K. Gebert. Ein Beitrag zur thermischen Modellbildung von schnelldrehenden Motorspindeln. Darmstädter Forschungsberichte für Konstruktion und Fertigung. Shaker Verlag; Aachen; 1997. ISBN 978-3-8265-2881-1.
[5] C. H. Chien; and J. Y. Jang. 3-D numerical and experimental analysis of a built-in motorized high-speed spindle with helical water cooling channel. Applied Thermal Engineering; 28: 2327-2336; 2008.
[6] J. Weber. Ein geräteorientiertes Modellierungskonzept mit Berücksichtigung der Fluideigenschaften für die dynamische Simulation in der Hydraulik. Dissertation; Technische Universität Dresden; 1990.
[7] E. Lautner; and F. Räpke. Simulationsmodul Fluidtechnik für systemübergreifende dynamische Analysen. Sonderdruck aus O+P Ölhydraulik und Pneumatik; 41(6); 1997.
[8] G. Jungnickel. Simulation des thermischen Verhaltens von Werkzeugmaschinen. Modellierung und Parametrierung. Schriftenreihe des Lehrstuhls für Werkzeugmaschinen; Addprint AG; Dresden; 2010. ISBN 978-3-86780-172-0.
[9] ANSYS Inc. (ed.). ANSYS CFX-Solver Modeling Guide. Canonsburg; U.S.A.; 2010.
[10] ANSYS Inc. (ed.). ANSYS CFX-Solver Theory Guide. Canonsburg; U.S.A.; 2010.
[11] H. Sigloch. Technische Fluidmechanik. Springer-Verlag; Berlin; Heidelberg; 2009. ISBN 978-3-642-03089-5.
[12] VDI (ed.). VDI-Wärmeatlas. Berechnungsunterlagen für Druckverlust; Wärme- und Stoffübertragung. Springer-Verlag; Berlin; Heidelberg; 2006. ISBN 3540255044.
[13] E. F. Schmidt. Wärmeübergang und Druckverlust in Rohrschlangen. Zeitschrift für Technische Chemie; Verfahrenstechnik und Apparatewesen; 39(13):781-832; 1967.
[14] J. Hak. Lösung eines Wärmequellen-Netzes mit Berücksichtigung der Kühlströme. Archiv für Elektrotechnik. 42(3):137-154; 1956