Conference article

High-Speed Compressible Flow and Gas Dynamics

Michael Sielemann
Deutsches Zentrum für Luft- und Raumfahrt, Robotics and Mechatronics Center, System Dynamics and Control, Wessling, Germany

Download articlehttp://dx.doi.org/10.3384/ecp1207681

Published in: Proceedings of the 9th International MODELICA Conference; September 3-5; 2012; Munich; Germany

Linköping Electronic Conference Proceedings 76:8, p. 81-100

Show more +

Published: 2012-11-19

ISBN: 978-91-7519-826-2

ISSN: 1650-3686 (print), 1650-3740 (online)

Abstract

Discretization schemes suitable for gas dynamics are reviewed and applied to the declarative concepts of Modelica. Here; a suitable connector definition is introduced to enable both robust simulation and higher-order schemes; which require larger stencils than typically available on established thermo-fluid dynamics connectors.

Keywords

Finite volume method; shock waves; monotone flux; total variation diminishing; essentially non-oscillatory

References

[1] W. Casas. Untersuchung und Optimierung sorptionsgestützter Klimatisierungsprozesse. PhD thesis; Technical University of Hamburg-Harburg; Institute of Thermo-Fluid Dynamics; 2006.

[2] W. Casas and G. Schmitz. Experiences with a gas driven; desiccant assisted air conditioning system with geothermal energy for an office building. Energ. Buildings.; 37(5):493–501; 2005. doi: 10.1016/j.enbuild.2004.09.011.

[3] F. Casella and A. Leva. Modelica open library for power plant simulation: design and experimental validation. In P. Fritzson; editor; Proceedings of the Third International Modelica Conference; pages 41–50; Linköping; Sweden; 2003.

[4] F. Casella and A. Leva. Modelling of thermohydraulic power generation processes using Modelica. Math. Comput. Model. Dyn. Syst.; 12(1):19–33; 2006. doi: 10.1080/13873950500071082.

[5] J. Díaz López. Shock wave modeling for Modelica. Fluid library using oscillation-free logarithmic reconstruction. In Proceedings of the Fifth International Modelica Conference; pages 641–649; 2006.

[6] H. Elmqvist; H. Tummescheit; and M. Otter. Object-oriented modeling of thermo-fluid systems. In P. Fritzson; editor; Proceedings of the Third International Modelica Conference; pages 269–286; Linköping; Sweden; 2003.

[7] R. Franke; F. Casella; M. Otter; M. Sielemann; S.-E. Mattson; H. Olsson; and H. Elmqvist. Stream connectors—an extension of Modelica for device-oriented modeling of convective transport phenomena. In F. Casella; editor; Proceedings of the seventh International Modelica conference; pages 108–121; Como; September 2009. doi: 10.3384/ecp09430078.

[8] T. Gallouët; J. Hérard; and N. Seguin. Some recent finite volume schemes to compute euler equations using real gas eos. Int. J. Numer. Meth. Fl.; 39(12):1073–1138; 2002. doi: 10.1002/fld.346.

[9] S. K. Godunov. A finite difference method for the computation of discontinuous solutions of the equations of fluid dynamics. Mat. Sbornik.; 47:357–393; 1959.

[10] A. Harten. High resolution schemes for hyperbolic conservation laws. J. Comput. Phys.; 49:357–393; 1983. doi: 10.1016/0021-9991(83)90136-5.

[11] A. Harten; B. Engquist; S. Osher; and S. Chakravarthy. Uniformly high order essentially non-oscillatory schemes; III. J. Comput. Phys.; 71:231–303; 1987. doi: 10.1016/0021-9991(87)90031-3.

[12] A. Harten; P. D. Lax; and B. van Leer. On upstream differencing and Godunov-type schemes for hyperbolic conservation law. SIAM Rev.; 25(1):35–61; 1983. doi: 10.1137/1025002.

[13] T. Y. Hou and P. LeFloch. Why non-conservative schemes converge to the wrong solutions: Error analysis. Math. Comput.; 62:497–530; 1994. doi: 10.1090/S0025-5718-1994-1201068-0.

[14] J. Jensen; J. Jensen; and H. Tummescheit. Moving boundary models for dynamic simulations of two-phase flows. In Proceedings of the Second International Modelica Conference; 2002.

[15] J. M. Jensen. Dynamic Modeling of Thermo-Fluid Systems with focus on evaporators for refrigeration. PhD thesis; Technical University of Denmark; Department of Mechanical Engineering; 2003.

[16] G. Jiang and C.-W. Shu. Effcient implementation of weighted ENO schemes. J. Comput. Phys.; 126:202–228; 1996. doi: 10.1006/jcph.1996.0130.

[17] P. D. Lax and B.Wendroff. Systems of conservation laws. Comm. Pure Appl. Math.; 13:217–237; 1960. doi: 10.1002/cpa.3160130205.

[18] M. Liou; B. Leer; and J. Shuen. Splitting of inviscid fluxes for real gases. J. Comput. Phys.; 87(1):1–24; 1990. doi: 10.1016/0021-9991(90)90222-M.

[19] S. Patankar and D. Spalding. A calculation procedure for heat; mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat. Mass. Tran.; 15:1787–1806; 1972. doi: 10.1016/0017-9310(72)90054-3.

[20] T. Pfafferott. Dynamische Simulation von CO2-Kälteprozessen für mobile Anwendungen. PhD thesis; Technical University of Hamburg-Harburg; Institute of Thermo-Fluid Dynamics; 2005.

[21] K. Prölß. Untersuchung von Energie- und Massespeicherungsvorgängen in Pkw-Kälteanlagen. PhD thesis; Technical University of Hamburg-Harburg; Institute of Thermo-Fluid Dynamics; 2009.

[22] K. Prölß and G. Schmitz. Modeling of frost growth on heat exchanger surfaces. In Proceedings of the Fifth International Modelica Conference; 2006.

[23] J. J. Quirk. An alternative to unstructured grids for computing gas dynamic flows around arbitrarily complex two dimensional bodies. Comput. Fluid.; 23(1):125–142; 1994. doi: 10.1016/0045-7930(94)90031-0.

[24] C. C. Richter. Proposal of New Object-Oriented Equation-Based Model Libraries for Thermodynamic Systems. PhD thesis; Technical University Braunschweig; Institute for Thermodynamics; 2008.

[25] R. D. Richtmyer and K. W. Morton. Difference Methods for Initial Value Problems. Interscience-Wiley; New York; 1967.

[26] P. L. Roe. Approximate Riemann solvers; parameter vectors; and difference schemes. J. Comput. Phys.; 43:357–372; 1981. doi: 10.1016/0021-9991(81)90128-5.

[27] V. V. Rusanov. Calculation of interaction of nonsteady shock waves with obstacles. USSR J. Comput. Math. Phys.; 1:267–279; 1961.

[28] C.-W. Shu. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. Advanced numerical approximation of nonlinear hyperbolic equations; 1697:325–432; 1998.

[29] M. Sielemann. Device-Oriented Modeling and Simulation in Aircraft Energy Systems Design. PhD thesis; Technical University of Hamburg-Harburg; Institute of Thermo-Fluid Dynamics; 2012.

[30] J. L. Steger and R. F.Warming. Flux vector splitting of the inviscid gasdynamic equations with applications to finite difference methods. J. Comput. Phys.; 40:263–293; 1981. doi: 10.1016/0021-9991(81)90210-2.

[31] G. Strang. On the construction and comparison of difference schemes. SIAM J. Numer. Anal.; 5(3):506–517; 1968. doi: 10.1137/0705041.

[32] P. K. Sweby. High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal.; 21:995–1011; 1984. doi: 10.1137/0721062.

[33] E. F. Toro. On two Glimm-related schemes for hyperbolic conservation laws. In Proceedings of the Fifth Annual Conference of the CFD Society of Canada; pages 3.49–3.54. University of Victoria; Canada; 1997.

[34] E. F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer; 1997. doi: 10.1007/978-3-662-03490-3.

[35] H. Tummescheit. Design and Implementation of Object-Oriented Model Libraries using Modelica. PhD thesis; Lund University; Department of Automatic Control; 2002.

[36] H. Tummescheit; J. Eborn; and K. Prölß. Airconditioning–a Modelica library for dynamic simulation of AC systems. In G. Schmitz; editor; Proceedings of the Fourth International Modelica Conference; Hamburg; Germany; 2005.

[37] B. van Leer. Towards the ultimate conservative difference scheme I. the quest for monotonicity. Lect. Notes. Phys.; 18:163–168; 1973.

[38] B. van Leer. Towards the ultimate conservative difference scheme II. monotonicity and conservation combined in a second order scheme. J. Comput. Phys.; 14:361–370; 1974. doi: 10.1016/0021-9991(74)90019-9.

[39] B. van Leer. Towards the ultimate conservative difference scheme III. upstream-centered finite difference schemes for ideal compressible flow. J. Comput. Phys.; 23:263–275; 1977. doi: 10.1016/0021-9991(77)90094-8.

[40] J. Vasel and G. Schmitz. Transient simulation of a direct-evaporating CO2 cooling system for an aircraft. In 25th International Congress of the Aeronautical sciences (ICAS); Proceedings of the; Hamburg; Germany; September 2006.

Citations in Crossref