Conference article

State/Parameter Estimation of a Small-scale CHP model

Juan Ignacio Videla
Telemark University College, Norway

Bernt Lie
Telemark University College, Norway

Download article

Published in: The 48th Scandinavian Conference on Simulation and Modeling (SIMS 2007); 30-31 October; 2007; Göteborg (Särö)

Linköping Electronic Conference Proceedings 27:14, p. 117-125

Show more +

Published: 2007-12-21


ISSN: 1650-3686 (print), 1650-3740 (online)


The state/parameter estimation problem is studied for a small-scale ICE CHP model. Three main groups of estimators with significant performance and com- plexity differences are analyzed: the Extended Kalman Filter (EKF) as an extension of the classical Kalman Filter; the generalized unscented Kalman filter (UKF) that uses the unscented transformation; and particle filtering like the particle filter with resampling (PFr) and the Ensemble Kalman Filter (EnKF)

The internal combustion engine is modeled as a mean-value engine model connected with a static generator model and the heat recovery circuit is modeled with two lumped heat exchanger models; one for the coolant circuit and the other for the exhaust gases. The coolant circuit is connected with the engine through a lumped inner engine thermal model.

Experimental data sets are artificially generated to test the di¤erent estimators. Dynamic parameters of the mean-value engine model are identify when the CHP model is simulated in open loop. Additionally; relevant heat transfer coe¢ cients of the heat recovery circuit are monitored when the model is simulated in closed loop.


No keywords available


[1] H. I. Onovwiona and V. I. Ugursal; ?Residential co- generation systems: review of the current technology;? Renewable and Sustainable Energy Reviews; pp. 1?43; 2004.

[2] G. E. Hovland; T. P. von Ho¤; E. A. Gallestey; M. An-toine; D. Farruggio; and A. D. B. Paice; ?Nonlinear estimation methods for parameter tracking in power plants;? Control Engineering Practice; vol. 13; pp. 1341?1355; 2005.

[3] R. E. Kalman; ?A new approach to linear ?lteringand prediction problems;?Transactions of the ASME? Journal of Basic Engineering; vol. 82; no. Series D; pp. 35?45; 1960.

[4] A. Gelb; J. F. Kasper; R. A. Nash; C. F. Price; and A. A. Sutherland; Applied Optimal Estimation. The M.I.T. Press; 1974.

[5] J. I. Videla and B. Lie; ?Simulation of a small scale si ice based cogeneration system in modelica/dymola;? in SIMS conference; Helsinki; Finland; September 2006.

[6] ? ? ; ?Simulation of a bio-ethanol ice chp system;?in 3rd International Green Energy Conference; Sweden; 2007.

[7] D. Cho and J. K. Hedrick; ?Automotive powertrain modeling for control;? ASME Journal of Dynamic Systems; Measurement and Control; vol. 111; no. 4; pp. pp.586?576; 1989.

[8] E. Hendricks and S. C. Sorenson; ?Mean value mod- eling of spark ignition engines;?SAE Technical Paper Series; no. 900616; 1990.

[9] E. Hendricks and T. Vesterholm; ?Analysis of mean value si engine models;?SAE Technical Paper Series; no. 920682; pp. 1?19; 1992.

[10] L. Guzzella and C. H. Onder; Introduction to Modeling and Control of Internal Combustion Engine Systems. Springer; 2004.

[11] J. L. Crassidis and J. L. Junkins; Optimal estimation of dynamic systems; ser. CRC applied mathematics and nonlinear science series. Chapman & Hall; 2000.

[12] S. F. Schmidt; Application of State-Space Methods to Navigation Problems; c.t. leondes ed. Academic Press; New York; San Francisco; London; 1966; vol. 3; pp. 293?340.

[13] D. Simon; Optimal State Estimation ?Kalman; H1; and Nonlinear Approaches. Hoboken; New Jersey: John Wiley & Sons; Inc.; 2006.

[14] S. J. Julier; J. K. Uhlmann; and H. F. Durrant-Whyte; A new approach for ?ltering nonlinear systems;? in Proceedings of the 1995 American Control Conference; Seattle; WA; 1995; pp. 1628?1632.

[15] S. Julier and J. Uhlmann; ?A general method for ap- proximating nonlinear transformations of probability distributions;?tech. rep.; RRG; Dept. of Engineering Science; University of Oxford; Nov 1996; Tech. Rep.; 1996.

[16] ? ? ; ?A new extension of the Kalman ?lter to nonlin- ear systems;?in Int. Symp. Aerospace/Defense Sens- ing; Simul. and Controls; Orlando; FL; 1997.

[17] S. J. Julier and J. K. Uhlmann; ?Unscented ?ltering and nonlinear estimation (invited paper);?in Proceed- ings of the IEEE; vol. 92(3). IEEE Institute of Elec- trical and Electronics; 2004; pp. 401?422.

[18] T. B. Schön; ?Estimation of nonlinear dynamic sys- tems; theory and applications;? Ph.D. dissertation; Linköpings Studies in Science and Technology; Swe- den; 2006.

[19] B. Ristic; S. Arulampalam; and N. Gordon; Beyond the Kalman Filter?Particle Filters and Tracking Ap- plications. Artech House; 2004.

[20] G. Evensen; ?The ensemble kalman ?lter: Theoreti- cal formulation and practical implementation;?Ocean Dynamics; vol. 53; pp. 343?367; 2003.

[21] S. Gillijns; O. B. Mendoza; J. Chandrasekar; B. L. R. D. Moor; D. S. Bernstein; and A. Ridley; ?What is the ensemble kalman ?lter and how well does it work?? in Proceedings of the 2006 American Control Confer- ence; Minneapolis; Minnesota; USA; June 2006.

[22] R. F. Stengel; Optimal Control And Estimation. John Wiley & Sons; Inc.; 1986.

Citations in Crossref