Conference article

Mixed Quantitative and Qualitative Simulation in Modelica

François E. Cellier
ETH Zürich, Switzerland

Victorino Sanz
UNED Madrid, Spain

Download articlehttp://dx.doi.org/10.3384/ecp09430050

Published in: Proceedings of the 7th International Modelica Conference; Como; Italy; 20-22 September 2009

Linköping Electronic Conference Proceedings 43:10, s. 86-95

Show more +

Published: 2009-12-29

ISBN: 978-91-7393-513-5

ISSN: 1650-3686 (print), 1650-3740 (online)

Abstract

This article introduces a new Modelica library; FIRlib; developed for the mixed quantitative and qualitative simulation of physical systems. Qualitative submodels are built using the Fuzzy Inductive Reasoning (FIR) paradigm.

Whereas Modelica has been designed for modeling physical systems from first principles; some systems do not lend themselves to this kind of modeling; either because they are too poorly understood (no meta-knowledge is available yet) or because they are so complex that capturing their behavior in a detailed fashion would be a hopeless undertaking.

Use of the new library is demonstrated by means of two examples; a simple hydraulic control system (a textbook example) and a model of the human cardiovascular system.

Keywords

fuzzy inductive reasoning; inductive modeling; qualitative modeling; mixed quantitative and qualitative simulation; cardiovascular system

References

[1] Babbie; E.: The Practice of Social Research; 5th Edition; Wadsworth Publishing Company; Belmont; CA; 1989

[2] Cellier; F.E.: Continuous System Modeling. Springer-Verlag; New York; 1991. doi: 10.1007/978-1-4757-3922-0

[3] Cellier; F.E. and Nebot; A.: The Modelica Bond Graph Library; In: Proc. 4th International Modelica Conference; Hamburg; Germany (2005) Vol.1; 57-65

[4] Cellier; F.E. and Nebot; A.: Object-oriented Modeling in the Service of Medicine; In: Proc. 6th Asia Simulation Conference; Beijing; China (2005) 33-40

[5] Cellier; F.E.; Nebot; A.; Mugica; F.; and de Albornoz; A.: Combined Qualitative/Quantitative Simulation Models of Continuous-time Processes Using Fuzzy Inductive Reasoning Techniques. In: International Journal of General Systems (1996) Vol. 24(1-2); 95-116. doi: 10.1080/03081079608945108

[6] Cellier; F.E. and Yandell; D.W.: SAPS-II: A New Implementation of the Systems Approach Problem Solver; In: Intl. J. General Systems (1987) Vol. 13(4); 307-322. doi: 10.1080/03081078708934976

[7] Cellier; F.E. and Zimmer; D.: Wrapping Multi-bond Graphs: A Structured Approach to Modeling Complex Multi-body Dynamics; In: Proc. 20th European Conference on Modeling and Simulation; Bonn; Germany (2006) 7-13

[8] Escobet; A.; Huber; R.M.; Nebot; A.; and Cellier F.E.: Enhanced Equal Frequency Partition Method for the Identification of a Water Demand System; In: Proc. AI; Simulation and Planning in High Autonomy Systems; Tucson; Arizona (2000) 209-215.

[9] Escobet; A.; Nebot; A.; and Cellier; F.E.: Visual-FIR: A Tool for Model Identification and Prediction of Dynamical Complex Systems; In: Simulation Modeling Practices and Theory (2008) Vol. 16(1); 76-92

[10] Nebot; A.: Qualitative Modeling and Simulation of Biomedical Systems Using Fuzzy Inductive Reasoning; Ph.D. Dissertation; Llenguatges i Sistemes Informàtics; Universitat Politècnica de Catalunya; Barcelona; Spain; 1994

[11] Nebot; A.; Cellier; F.E.; and Vallverdú; M.: Mixed Quantitative/Qualitative Modeling and Simulation of the Cardiovascular System; In: Computer Methods and Programs in Biomedicine (1998) Vol. 55(2); 127-155. doi: 10.1016/S0169-2607(97)00056-4

[12] Vallverdú; M.: Modelado y Simulación del Sistema de Control Cardiovascular en Pacientes con Lesiones Coronarias; Ph.D. Dissertation; Institut de Cibernètica; Universitat Politècnica de Catalunya; Barcelona; Spain; 1993

Citations in Crossref