Conference article

Simulation of an absorption chiller based on a physical model

Christian Fleßner
Technische Universität Berlin, Fachgebiet Maschinen- und Energieanlagentechnik, Germany

Stefan Petersen
Technische Universität Berlin, Fachgebiet Maschinen- und Energieanlagentechnik, Germany

Felix Ziegler
Technische Universität Berlin, Fachgebiet Maschinen- und Energieanlagentechnik, Germany

Download article

Published in: Proceedings of the 7th International Modelica Conference; Como; Italy; 20-22 September 2009

Linköping Electronic Conference Proceedings 43:34, s. 312-317

Show more +

Published: 2009-12-29

ISBN: 978-91-7393-513-5

ISSN: 1650-3686 (print), 1650-3740 (online)


Previous works on simulation of air conditioning systems with absorption chillers in conjunction with detailed experimental analysis have shown a need for a more detailed and generalized modelling and simulation of heat and mass transfer processes in absorption chillers. An existing model for absorption is adapted to be applicable for subcooled or superheated liquids and for the desorption process. New classes compatible with the Modelica_Fluid library (beta 2) for these sub-processes are developed. A media model for evaporating aqueous salt solutions based on Modelica. Media is developed and implemented accordingly. Subsequently; simulations of a complete absorption chiller are conducted and compared with experimental data. The comparison of simulations under stationary conditions show a good agreement with experimental data while the transient behaviour of the plant is not yet fully implemented in the model.


Heat and mass transfer; falling film; aqueous salt solutions; Modelica.Media; Modelica_Fluid


[1] Annett Kühn; José Luis Corrales Ciganda; Felix Ziegler. (2008): Comparison of control strategies of solar absorption chillers; Proceedings of the 1st International Conference on Solar Heating; Cooling and Buildings (Eurosun); 7-10 October 2008; Lisbon; Portugal

[2] Annett Kühn; Lukas Enke; Felix Ziegler (2008): Detailed Analysis of A 10 kW H20/LIBR Absorption Chiller; International Sorption Heat Pump Conference 2008; 23-26 September 2008; Seoul

[3] Katja Poschlad; Manuel A. Pereira Remelhe; Martin Otter (2006): Modeling of an experimental Batch Plant with Modelica; Proceedings of the 5th International Modelica Conference 2006; Vienna

[4] Günther Feuerecker (1994): Entropieanalyse für Wärmepumpensysteme: Methoden und Stoffdaten; Ph.D.-Thesis Technische Universität München

[5] R.J. Lee; R.M. DiGuilio; S.M. Jeter; A.S. Teja (1990): Properties of Lithium Bromide-Water Solutions at High Temperatures and Concentrations - II Density and Viscosity in ASHRAE Transactions; Paper 3381; RP-527; pp. 709-714 Atlanta: American Society of Heating; Refrigerating and Air-Conditioning Engineers

[6] Hein Auracher; Arnold Wohlfeil; Felix Ziegler (2008): A simple physical model for steam absorption into a falling film of aqueous lithium bromide solution on a horizontal tube; Heat and Mass Transfer 44; 1529-1536

[7] Siyoung Jeong; Srinivas Garimella (2002): Falling-film and droplet mode heat and mass transfer in a horizontal tube LiBr/water absorber: International Journal of Heat and mass Transfer 45; 1445-1458 doi: 10.1016/S0017-9310(01)00262-9.

[8] Paul Kohlenbach (2006): Solar Cooling with absorption chillers: Control strategies and transient chiller performance: Ph.D.-Thesis Technische Universität Berlin; DKV-Forschungsbericht Nr. 74

Citations in Crossref