Conference article

Real-Time Simulation of CESA-I Central Receiver Solar Thermal Power Plant

Javier Bonilla
CIEMAT- Plataforma Solar de Almería, Ctra, Spain

Lidia Roca
CIEMAT- Plataforma Solar de Almería, Ctra, Spain

Luis J. Yebra
CIEMAT- Plataforma Solar de Almería, Ctra, Spain

Sebastián Dormido
Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain

Download article

Published in: Proceedings of the 7th International Modelica Conference; Como; Italy; 20-22 September 2009

Linköping Electronic Conference Proceedings 43:39, s. 345-353

Show more +

Published: 2009-12-29

ISBN: 978-91-7393-513-5

ISSN: 1650-3686 (print), 1650-3740 (online)


This paper presents a real-time heliostat field simulator; based on a hybrid model; using Modelica as the modelling language. The development of industrial dynamic simulators; in this work for a central receiver solar thermal power plant: CESA-I from CIEMAT-PSA; is mainly aimed as a tool for the enhancement of advanced control algorithms but it is also useful for training purposes. The developed real-time heliostat field simulator is basically the union of the hybrid heliostat field model and a wrapped model which handles the real-time simulation and communication issues between the heliostat field simulator and HelFiCo (Heliostat Field Control) software which is in charge of manipulating and controlling the heliostat field according to an automatic control strategy. The real-time heliostat field simulator provides a virtual system; with the same response as the real plant.


Real-time simulation; hybrid modelling; heliostat field; solar thermal power plant


[1] Bonilla; J.; Roca; L.; González; J.; Yebra; L.J: Modelling and real-time simulation of heliostat fields in Central Receiver Plants. In: 6th Vienna International Conference on Mathematical Modelling; 2009; 2576–2579.

[2] Dynamsim; A.B.: Dymola - Dynamic Modelling Laboratory. Ideon Science Park; SE-223 70 Lund; Sweden. Online:; 2009.

[3] Frey; G.: JPAARealTime V0.1. - An open source real time option for Dymola. Department of Mechatronics Engineering; Saarland University; Saarbrücken; Saarland; Germany. Online: ; 2007.

[4] Fritzon; P.: Principles of Object-Oriented Modelling and Simulation with Modelica 2.1. John Wiley & Sons; IEEE Press; 2004. doi: 10.1109/9780470545669.

[5] García-Martín; F.J.; Berenguel; M.; Valverde; A.; Camacho; E.F.: Heuristic Knowledge-based Heliostat Field Control for the Optimization of the Temperature Distribution in a Volumetric Receiver; In: Solar Energy; vol 66; 1999; 355–369. doi: 10.1016/S0038-092X(99)00024-9.

[6] Garcia; P.; Ferriere; A.; Bezian; J.: Codes for solar flux calculation dedicated to central receiver system applications: A comparative review; In: Solar Energy; vol 82; 2008; 189–197. doi: 10.1016/j.solener.2007.08.004.

[7] González; J.; Yebra; L. J.; Berenguel; M.; Valverde; A.; Romero; M.: Real-time Distributed control system for heliostat fields (in Spanish). In: XXV Jornadas de Automática; 2004.

[8] Modelica and the Modelica Association. : Modelica Standard Library; Version 2.2.1; 2007. Online: .

[9] Otter; M.; Årzén; K-E.; Dressler; I.: StateGraph – A Modelica Library of Hierarchichal State Machines. In: Proc. 4th International Modelica Conference; 2005.

[10] Petzold; L. R.; Hindmarsh; A. C.: LSODAR. Computing and Mathematics Research Division; 1-316 Lawrence Livermore National Laboratory; Livermore CA 94550.

[11] Schmidt; D. C.: The Adaptive Communication Environment (ACE); DOC software. Washington University; University of California; Irvine; and Vanderbilt University. Online: ; 2007.

[12] Trolltech:A cross-platform application and UI framework. Online: ; 2008.

[13] Yebra; L.J.; Berenguel; M. and Dormido; S. and Romero; M.: Modelling and Simulation of Central Receiver Solar Thermal Power Plants. In: Proc. 2005 European Control Conference Decision and Control CDC-ECC’05. 44th IEEE Conference; 2005; 7410–7415.

Citations in Crossref