Conference article

Modeling and Simulation of a Solar Tower Power Plant with Open Volumetric Air Receiver

Nils Ahlbrink
German Aerospace Center, Institute of Technical Thermodynamics, Germany

Boris Belhomme
German Aerospace Center, Institute of Technical Thermodynamics, Germany

Robert Pitz-Paal
German Aerospace Center, Institute of Technical Thermodynamics, Germany

Download articlehttp://dx.doi.org/10.3384/ecp09430048

Published in: Proceedings of the 7th International Modelica Conference; Como; Italy; 20-22 September 2009

Linköping Electronic Conference Proceedings 43:80, s. 685-693

Show more +

Published: 2009-12-29

ISBN: 978-91-7393-513-5

ISSN: 1650-3686 (print), 1650-3740 (online)

Abstract

The start-up of the PS10 power plant in Seville; Spain; in 2007 marked the entrance of solar tower power plants into the commercial state. Questions about the right operational strategy; particularly during unsteady operation states; come to the fore; and therewith the need to carry out transient simulations of entire tower power plants including the heliostat field. Meeting this necessity; the presented simulation approach opens the way to transient full plant simulations of solar tower power plants. A detailed heliostat field model was linked to a dynamic receiver model by coupling both simulation tools. A second coupling was established to a tool hosting a control panel of the heliostat field model. With this simulation approach; a start-up procedure and a tracking stop were simulated delivering different transient behaviors of local absorber temperatures and mass flows.

Keywords

Solar tower; modeling; tool coupling; plant simulation

References

[1] Belhomme; B.; Pitz-Paal; R.; Schwarzbözl; P.; Ulmer; S. (2009): A new fast Ray Tracing Tool for High-Precision Simulation of Heliostat Fields; Journal of Solar Energy Engineering; 131 (3); 2009; in Press. doi: 10.1115/1.3139139.

[2] Tummescheid; H. (2002): Design and Implementation of Object-Oriented Model Libraries using Modelica. Thesis; Department of Automatic Control; Lund Institute of Technology; Lund; August 2002

[3] Modelica Association (2009): Modelica® - A Unified Object-Oriented Language for Physical Systems Modeling; Language Specifications; Version 3.1; May 27th; 2009

[4] Dynasim AB (2004): Dymola Version 7.1 http://www.dynasim.se

[5] Ahlbrink; N.; Alexopoulos; S.; Andersson; J.; Belhomme; B.; Boura; C.; Gall; J.; Hirsch; T. (2009): vICERP – The virtual Institute of Central Receiver Power Plants: Modeling and Simulation of an Open Volumetric Air Receiver Power Plant. Conference Proceedings; MATMOD Conference 2009; 263; Vienna; February 11-13; 2009

[6] Casella; F.; Otter; M.; Proelss; K.; Richter; C.; Tummescheid; H. (2006): The Modelica Fluid and Media library for modeling of incompressible and compressible thermo-fluid pipe networks. Conference Proceedings; Modelica Conference 2006; 631-640; Vienna; September 4-5 2006

[7] Schmitz; M.; Boura; C.; Ahlbrink; N.; Gall; J.; Andersson; J. (2009): Optimized control of a hot –gas cycle for solar thermal power plants. Conference Proceedings; Modelica Conference 2009; Como; September 20-22; 2009; in Press

[8] Garcia; P.; Ferriere; A. (2008): Codes for Solar Flux Calculation dedicated to Central Receiver System Application: A comparative Review; Journal of Solar Energy; 3 (2008) 189-197. doi: 10.1016/j.solener.2007.08.004.

[9] Hoffschmidt; B. (1997): Vergleichende Bewertung verschiedener Konzepte volumetrischer Strahlungsempfänger. Forschungsbericht / Deutsches Zentrum für Luft- und Raumfahrt e.V.; 1997; 35; Köln: DLR; 1997. 212 S.: ISBN: 1434-8454; Aachen; Technische Hochschule; Diss.; Reportnr.: DLR FB 97 35

[10] Fritzson; P. (2004): Principles of objectoriented modeling and simulation with Modelica 2.1. Wiley-IEEE Press; 2004

Citations in Crossref