Conference article

LIEDRIVERS— A Toolbox for the Efficient Computation of Lie Derivatives Based on the Object-Oriented Algorithmic Differentiation Package ADOL-C

Klaus Röbenack
Technische Universität Dresden. Faculty of Electrical and Computer Engineering. Institute of Control Theory, Germany

Jan Winkler
Technische Universität Dresden. Faculty of Electrical and Computer Engineering. Institute of Control Theory, Germany

Siqian Wang
Technische Universität Dresden. Faculty of Electrical and Computer Engineering. Institute of Control Theory, Germany

Download article

Published in: Proceedings of the 4th International Workshop on Equation-Based Object-Oriented Modeling Languages and Tools; Zurich; Switzerland; September 5; 2011

Linköping Electronic Conference Proceedings 56:7, p. 57-66

Show more +

Published: 2011-11-03

ISBN: 978-91-7519-825-5

ISSN: 1650-3686 (print), 1650-3740 (online)


Lie derivatives are widely used in mathematics and physics. They are usually computed symbolically using computer algebra software. This symbolic computation might fail for very complicated expressions. Moreover; symbolic differentiation becomesmore difficult if the function to be differentiated is not described explicitly as a function but by an algorithm. This is a situation occuring quite often in modeling languages. In this contribution we present an approach for calculating Lie derivatives based on algorithmic differentiation using the software package ADOL-C avoiding the drawbacks of symbolic differentiation.


Lie derivatives; algorithmic differentiation


[1] CppAD: A Package for Differentiation of C++ Algorithms.

[2] Maxima; a computer algebra system. http://maxima.

[3] R. Abraham; J. E. Marsden; and T. Ratiu. Manifolds;Tensor Analysis; and Applications. Springer; New York; 2nd edition; 1983.

[4] Web-Portal über Automatisches Differenzieren.

[5] C. Bendtsen and O. Stauning. FADBAD; a flexible C++ package for automatic differentiation. Technical Report IMM-REP-1996-17; TU of Denmark; Dept. of Mathematical Modelling; Lungby; 1996.

[6] C. Bendtsen and O. Stauning. TADIFF; a flexible C++ package for automatic differentiation. Technical Report IMM-REP-1997-07; TU of Denmark; Dept. of Mathematical Modelling; Lungby; 1997.

[7] G. L. Blankenship and H. G. Kwatny. Computational methods for control of dynamical systems. In N. Munro; editor; Symbolic methods in control system analysis and design; volume 56 of IEE Control Engineering Series; chapter 15. IEE Press; London; 1999.

[8] B. Christianson. Reverse accumulation and accurate rounding error estimates for Taylor series. Optimization Methods & Software; 1:81–94; 1992.

[9] G. Ciccarella; M. Dalla Mora; and A. Germani. A Luenberger-like observer for nonlinear systems. Int. J. Control; 57(3):537–556; 1993.

[10] J.-M. Cornil and P. Testud. An Introduction to Maple V. Springer; 2001.

[11] M. DallaMora; A. Germani; and C.Manes. A state observerfor nonlinear dynamical systems. Nonlinear Analysis; Theory; Methods & Applications; 30(7):4485–4496; 1997.

[12] B. de Jager. The use of symbolic computation in nonlinearcontrol: Is it viable? IEEE Trans. on Automatic Control; 40(1):84–89; 1995.

[13] S. A. Forth. An efficient overloaded implementation offorward mode automatic differentiation in MATLAB. ACM Transactions on Mathematical Software; 32(2):195–222; jun 2006.

[14] J. P. Gauthier; H. Hammouri; and S. Othman. A simple observer for nonlinear systems—application to bioreactors. IEEE Trans. on Automatic Control; 37(6):875–880; 1992.

[15] R. Giering and Th. Kaminski. Recomputations in reverse mode ad. In G. Corliss; Ch. Faure; A. Griewank; Hascoët; and U. Naumann; editors; Automatic Differentiation: From Simulation to Optimization; chapter 33; pages 283–290. Springer; 2002.

[16] A. Griewank; D. Juedes; and J. Utke. ADOL-C: Apackage for automatic differentiation of algorithms written in C/C++. ACM Trans. Math. Software; 22:131–167; 1996.

[17] A. Griewank and A. Walther. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. SIAM; 2nd edition; 2008.

[18] D. D. Holm; T. Schmah; and C. Stoica. Geometric Mechanicas and Symmetry. Oxford University Press; 2009.

[19] C. J. Isham. Modern Differential Geometry for Physicists. World Scientific; 2 edition; 2001.

[20] A. Isidori. Nonlinear Control Systems: An Introduction. Springer-Verlag; London; 3. edition; 1995.

[21] A. Kugi; K. Schlacher; and R. Novaki. Symbolic Computation for the Analysis and Synthesis of Nonlinear Control Systems; volume 2 of Software Studies; pages 255–264. WIT-Press; Southampton; 1999.

[22] H. G. Kwatny and G. L. Blankenship. Nonlinear Control and Analytical Mechanics: A Computational Approach. Birkhäuser; Boston; 2000.

[23] J. M. Lee. Introduction to Smooth Manifolds; volume 218 of Graduate Texts in Mathematics. Springer; New York; 2006.

[24] M. Lemmen; T. Wey; and M. Jelali. NSAS – ein Computer- Algebra-Packet zur Analyse und Synthese nichtlinearer systeme. Forschungsbericht Nr. 20/95; Gerhard-Mercator- Universität-GH Duisburg; Meß-; Steuer- und Regelungstechnik; 1995.

[25] H. Nijmeijer and A. J. van der Schaft. Nonlinear Dynamical Control systems. Springer; New York; 1990.

[26] R. Oloff. Geometrie der Raumzeit. Vieweg Verlag; Wiesbaden; 3. edition; 2004.

[27] V. Polyakov; R. Ghanadan; and G. L. Blankenship. Symbolic numerical computational tools for nonlinear and adaptive control. In Proc. IEEE/IFAC Joint Symposium on Computer-Aided Control System Design; pages 117–122; Tucson; Arizona; 1994.

[28] K. Röbenack. On the efficient computation of higher order maps adk fg(x) using Taylor arithmetic and the Campbell- Baker-Hausdorff formula. In Alan Zinober and David Owens; editors; Nonlinear and Adaptive Control; volume 281 of Lecture Notes in Control and Information Science; pages 327–336. Springer; 2002.

[29] K. Röbenack. Automatic differentiation and nonlinear controller design by exact linearization. Future Generation Computer Systems; 21(8):1372–1379; 2005.

[30] K. Röbenack. Computation of high gain observers for nonlinear systems using automatic differentiation. Journal Dynamic Systems; Measurement; and Control; 127(1):160– 162; 2005.

[31] K. Röbenack. Computation of Lie derivatives of tensorfields required for nonlinear controller and observer design employing automatic differentiation. Proc. in Applied Mathematics and Mechanics; 5(1):181–184; 2005.

[32] K. Röbenack. Nonlinear controller design based on algorithmic plant description. Mathematical and Computer Modelling of Dynamical Systems; 13(2):193–209; 2007.

[33] K. Röbenack and K. J. Reinschke. A efficient method to compute Lie derivatives and the observability matrix for nonlinear systems. In Proc. 2000 International Symposium on Nonlinear Theory and its Applications (NOLTA’2000); Dresden; Sept. 17-21; volume 2; pages 625–628; 2000.

[34] K. Röbenack and K. J. Reinschke. Reglerentwurf mit Hilfe des Automatischen Differenzierens. Automatisierungstechnik; 48(2):60–66; 2000.

[35] K. Röbenack and K. J. Reinschke. The computation of Lie derivatives and Lie brackets based on automatic differentiation. Z. Angew. Math. Mech.; 84(2):114–123; 2004.

[36] R. Rothfuss and M. Zeitz. Einführung in die Analysenichtlinearer Systeme. In S. Engell; editor; Entwurf nichtlinearer Regelungen; pages 3–22. Oldenbourg-Verlag; München; 1995.

[37] C. Rui; I. V. Kolmanovsky; and N. H. McClamroch. Symboliccomputation in nonlinear control of multibody space systems. In ACC’1998 (American Control Conference); Philadelphia; 1998.

[38] J. Schaffner andM. Zeitz. Variants of nonlinear normal form observer design. In H. Hijmeijer and T. I. Fossen; editors; New Direction in Nonlinear Observer Design; volume 244 of Lecture Notes in Control and Information Science; pages 161–180. Springer-Verlag; London; 1999.

[39] H. Skaug and D Fournier. Automatic approximation of the marginal likelihood in nonlinear hierarchical models. Computational Statistics and Data Analysis; 51(2):699– 709; 2006.

[40] S. Stamatiadis; R. Prosmiti; and S. C. Farantos.AUTO_DERIV: Tool for automatic differentiation of a FORTRAN code. Comput. Phys. Commun.; 127(2&3):343–355; may 2000. Catalog number: ADLS.

[41] O. Stauning and C. Bendtsen. FADBAD++: Flexibleautomatic differentiation using templates and operator overloading in ANSI C++. http://www2.imm.dtu. dk/~km/FADBAD/.

[42] V. Toth. Tensor manipulation in GPL Maxima. arXiv:cs/0503073v2 [cs.SC]; 2005.

[43] V. S. Varadarajan. Lie Groups; Lie Algebras; and Their Representation. Springer-Verlag; 1984.

[44] A. Verma. ADMAT: Automatic differentiation for MATLAB using object oriented methods. In SIAM workshop on object oriented methods; pages 174–183; 1999.

[45] G. M. von Hippel. Taylur; an arbitrary-order automatic differentiation package for fortran 95. Comput.Phys.Commun.; 174:569–576; 2006.

[46] A. Walther; A. Griewank; and O. Vogel. ADOL-C: Automatic differentiation using operator overloading in C++. Proc. in Applied Mathematics and Mechanics; 2(1):41–44; 2003.

[47] P. J. Werbos. The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting. Wiley; 1994.

[48] S. Wolfram. The MATHEMATICA Book. Cambridge University Press; 1999.

[49] M. Zeitz. The extended Luenberger observer for nonlinear systems. Systems & Control Letters; 9:149–156; 1987.

Citations in Crossref