Conference article

Assessment of the Energetic Efficiency of A Continuously Operating Plant for Hydrothermal Carbonisation of Biomass

Jan Stemann
Technische Universität Berlin, Institute of Energy Engineering, Germany

Felix Ziegler
Technische Universität Berlin, Institute of Energy Engineering, Germany

Download articlehttp://dx.doi.org/10.3384/ecp11057125

Published in: World Renewable Energy Congress - Sweden; 8-13 May; 2011; Linköping; Sweden

Linköping Electronic Conference Proceedings 57:17, p. 125-132

Show more +

Published: 2011-11-03

ISBN: 978-91-7393-070-3

ISSN: 1650-3686 (print), 1650-3740 (online)

Abstract

To date wet lignocellulosic biomass cannot be used efficiently for energy production. By hydrothermal carbonisation (HTC) wet biomass may be efficiently transformed to a solid; lignite-like fuel with good dewatering and grinding properties and a high calorific value. Energetic yields of the HTC reaction can be derived from lab scale experiments. However; for the assessment of energetic efficiencies of a HTC plant the amount of external energy consumption needs to be calculated. A model of a semi-continuously HTC plant is presented with a heat recovery system which is based on recycling of hot compressed water. Results of simulations with the program Engineering Equations Solver show that energy consumption can be significantly reduced by internal heat recovery. Efficiencies of a HTC plant model are presented based on experiments with beech wood chips as a model biomass. A sensitivity analysis of the water content of the biomass and the heat of reaction is presented.

Keywords

Hydrothermal carbonisation; biomass; heat recovery; efficiency

References

[1] F. Bergius; Die Anwendung hoher Drucke bei chemischen Vorgängen und eine Nachbildung des Entstehungsprozesses der Steinkohle; Wilhelm Knapp; 1913; pp. 33–58.

[2] S. Inoue; T. Hanaoka; T. Minowa; hot compressed water treatment for production of charcoal from wood; Journal of Chemical Engineering of Japan 10; 2002; pp. 1020-1023. doi: 10.1252/jcej.35.1020.

[3] W. Yan; J. Hastings; T. Acharjee; C. Coronella; V. Vásquez; Mass and energy balances of wet torrefaction of lignocellulosic biomass; Energy Fuels 24; 2010; pp. 4738-4742. doi: 10.1021/ef901273n.

[4] W. Yan; T. Acharjee; C. Coronella; V. Vásquez; Thermal Pretreatment of Lignocellulosic Biomass; Environmental Progress and Sustainable Energy; 28; 3; 2009; pp. 435-440

[5] C. Grimm; Fördervorhaben der DBU zur Hydrothermalen Karbonisierung – Ziele und Stand; Gülzower Fachgespräche 33; Fachagentur Nachwachsende Rohstoffe (FNR); 2010; pp. 37-40.

[6] B. Erlach; G. Tsatsaronis; Upgrading of biomass by hydrothermal carbonisation: analysis of an industrial-scale plant design. Proceedings of 23rd International Conference on Efficiency; Cost; Optimization; Simulation and Environmental Impact of Energy Systems. Lausanne; Switzerland; 14–17 June 2010.

[7] S. Hägglund; (ed.); Vatkolning av Torv AB; Technical Report; Svensk Torvförädling; Lund; Sweden; 1960; p 188.

[8] J. Daniel; pers. comm. [distribution of special valves; Cera System; Hermsdorf] 21.07.2010.

[9] M. Swanson; M. Musich; D. Schmidt; J. Schultz; feed system innovation for gasification of locally economical alternative fuels; final report; energy & environmental research center; University of North Dakota (2002); pp. 77-109.

[10] S. Berger; Entwicklung und technische Umsetzung der Mechanisch/Thermischen Entwässerung zum Einsatz als Vortrocknungsstufe in braunkohlegefeuerten Kraftwerken; Berichte aus der Verfahrenstechnik; Shaker Verlag; Aachen; 2002; pp. 8; 63-112.

[11] C. Bergins; Mechanismen und Kinetik der Mechnisch/Thermischen Entwässerung von Braunkohle; Berichte aus der Verfahrenstechnik; Shaker Verlag; Aachen; 2001; pp. 39-58.

[12] A. Funke; F. Ziegler; Propagation of uncertainties and systematic errors in the measurements of long-lasting heat flows using differential scanning calorimetry; accepted for publication in Journal of Thermal Analysis and Calorimetry.

[13] V. Scholz; W. Daries; R. Rinder; Mechanische Entwässerung von Silage; Landtechnik 5; 2009; pp. 333-335.

Citations in Crossref