Conference article

Bi-Layer GaOHPc:PCBM/P3HT:PCBM Organic Solar Cell

I. Kaulachs
Institute of Physical Energetics, Riga, Latvia

I. Muzikante
Institute of Solid State Physics, University of Latvia, Riga, Latvia

L. Gerva
Institute of Solid State Physics, University of Latvia, Riga, Latvia

G. Shlihta
Institute of Physical Energetics, Riga, Latvia

P. Shipkovs
Institute of Physical Energetics, Riga, Latvia

G. Kashkarova
Institute of Physical Energetics, Riga, Latvia

M. Roze
Riga Technical University, Riga, Latvia

J. Kalnachs
Institute of Physical Energetics, Riga, Latvia

A. Murashov
Institute of Physical Energetics, Riga, Latvia

G. Rozite
Institute of Physical Energetics, Riga, Latvia

Download articlehttp://dx.doi.org/10.3384/ecp110572846

Published in: World Renewable Energy Congress - Sweden; 8-13 May; 2011; Linköping; Sweden

Linköping Electronic Conference Proceedings 57:21, p. 2846-2852

Show more +

Published: 2011-11-03

ISBN: 978-91-7393-070-3

ISSN: 1650-3686 (print), 1650-3740 (online)

Abstract

For production organic bulk heterojunction polymer solar cell one of the best materials is regioregular poly-3-hexylthiophene (P3HT); which is widely used as a donor molecule and a hole transporter; with soluble fullerene derivative (PCBM) as acceptor and electron transporter. The main drawback of this highly efficient blend is its limited spectral range; covering only 350-650 nm spectral interval. So main aim of present work was to extend the spectral range of the cell up to 850 nm by adding second bulk heterojunction layer of complementary absorption spectrum to P3HT:PCBM layer. For this purpose hydroxygallium phthalocyanine (GaOHPc) and PCBM blend was used as additional layer because GaOHPc has strong and wide intermolecular charge transfer (CT) absorption band around 830-850 nm. Thus novel organic bi-layer bulk heterojunction system (GaOHPc:PCBM/P3HT:PCBM) has been built by spin coating technique having high charge carrier photogeneration efficiency in 350 – 850 nm spectral range. It was found that thermal annealing in vacuum at 100C increases short circuit photocurrent external quantum efficiency (EQE) values more than 2 – 3 times; and these values reach more than 45% at P3HT absorption band (525 nm) and 25% at GaOHPc band (845 nm) for low light intensities (1012 photon/(cm2*s)).

Keywords

Full polymer film; heterojunction; organic solar cell

References

[1] Portman J.; and Arkhipov V; Thin Film Solar Cells: Fabrication; Characterization and Applications; John Willey & Sons Ltd; 2006; pp. 471. doi: 10.1002/0470091282.

[2] Lewerenz H. J.; and Jungblut H; Photovoltaic – Grandlagen und Anwendungen Berlin; Heidelberg: Springer; 1995.

[3] Shaheen S.E.; Brabec C.J.; Saricftci N.S. Padinger F.; Fromherz T.; Humalen J.C; 2.5% Efficient Organic Solar Cells Appl. Phys. Lett.; 78; 2001; pp. 841–843 doi: 10.1063/1.1345834.

[4] Yu G.; Gao J.; Hummelen J.C.; Wudl F.; Heeger A.J; Polymer Photovoltaic Cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions; Science; 270; 1995; pp. 1789–1791 doi: 10.1126/science.270.5243.1789.

[5] Peumans P.; Forrest S.R; Very-high-efficiency double hetero-structure copper-phthalocyanine /C60 photovoltaic cells; Appl. Phys. Lett.; 80 (2); 2002; pp. 338–338 doi: 10.1063/1.1432440.

[6] Shaheen S.E.; Radspinner R.; Peyghambrian N.; Jabbor G.E; Fabrication of bulk heterojunction plastic solar cells by screen printing; Appl. Phys. Lett. 79(18); 2001; pp. 2996–2998 doi: 10.1063/1.1413501.

[7] Winder C.; Sariciftci N.S; Low band gap polymers for photon harvesting in bulk heterojunction solar cells; J. of Materials Chemistry; 14; 2004; pp. 1077–1085 doi: 10.1039/b306630d.

[8] Al-Ibrahim M.; Roth H.K.; Zhokhavets U.; Gobsch G.; Sensfuss S; Flexible large area polymer solar cells based on poly(3-hexylthiophene)/fullerene; Solar Energy Materials & Solar Cell; 85; 2005; pp. 13–20

[9] Kim J.Y.; Kim S.H.; Lee H.; Lee. K.; Ma W.; Gong X.; Heeger A.J; New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer; Adv. Mater.; 18; 2006; pp. 572–576 doi: 10.1002/adma.200501825.

[10] Ma W.; Yang C.; Gong X.; Lee K.; Heeger A.J; Thermally stable; efficient polymer solar cells with nanoscale control of the interpenetrating network morphology; Adv. Funct. Mater.; 15; 2005; pp. 1617–1622 doi: 10.1002/adfm.200500211.

[11] M.Lenes; A.H.Wetzelaer; F.B.Kooistra; S.C.Veenstra; J.C.Hummelen; W.M.Blom; Fullerene Bisadducts for Enhanced Open –Circuit Voltages and Efficiencies in Polymer Solar Cells; Adv.Mater; 20; 2008; pp. 2116-2119 doi: 10.1002/adma.200702438.

[12] Parra V.; Vilar M.R; Battaglini N.; Ferraria A.M.; Botelho do Rego A.M.; Boufi S.; Rodríguez-Méndez M.L.; Fonavs E.; Muzikante I.; Bouvet M; New Hybrid Films Based on Cellulose and Hydroxygallium Phthalocyanine: Synergetic Effects in the Structure and Properties; Langmuir 23 7; 2007; pp. 3712–3722

[13] Yamasaki K.; Okada O.; Inami K.; Oka K.; Kotani M.; Yamada H; Gallium Phthalocyanines: Structure Analysis and Electroabsorption Study; J. Phys. Chem.; 101; 1997; pp. 13–19 doi: 10.1021/jp961231o.

[14] Saito T.; Sisk W.; Kobaysashi T.; Suzuki S.; Iwayanagi T.; Photocarrier Generation Processes of Phthalocyanines Studied by Photocurrent and Electroabsorption Measurements; J. Phys. Chem.; 97; 1993; pp. 8026–8031 doi: 10.1021/j100132a036.

[15] H.Do; M.Reinhard; H.Vogeler; A.Puetz; F.G.Klein; W.Schabel; A.Colsmann; U.Lemmer; Polymeric anodes from poly(3;4-ethylenedioxythiopene):poly (styrenesulfonate) for 3;5% efficient organic solar cells; Thin Solid Films; 517; 2009; pp. 5900-5902. doi: 10.1016/j.tsf.2009.03.212.

[16] I.Kaulach.; E.Silinsh. Molecular Triplet Exciton Generation via Optical Charge Transfer States in a – Metal Free Phthalocyanine; Studied by Magnetic Field Effect; Latv. J. Phys. Tech. Sci.; 5; 1994; pp. 12–22.

[17] F.R.Fan; L.R.Faulkner; Photovoltaic effects of metal-free and zinc phthalocyanines; J.Chem.Phys. 69 (7); 1978; pp. 3334-3349. doi: 10.1063/1.436987.

Citations in Crossref