Conference article

Development of a Solar Intermittent Refrigeration System for Ice Production

G. Moreno-Quintanar
Centro de Investigación en Energía, Universidad Nacional Autónoma de Måxico, Mexicoo

W. Rivera
Centro de Investigación en Energía, Universidad Nacional Autónoma de Måxico, Mexicoo

R. Best
Centro de Investigación en Energía, Universidad Nacional Autónoma de Måxico, Mexicoo

Download articlehttp://dx.doi.org/10.3384/ecp110574033

Published in: World Renewable Energy Congress - Sweden; 8-13 May; 2011; Linköping; Sweden

Linköping Electronic Conference Proceedings 57:48, p. 4033-4040

Show more +

Published: 2011-11-03

ISBN: 978-91-7393-070-3

ISSN: 1650-3686 (print), 1650-3740 (online)

Abstract

A solar powered intermittent absorption refrigeration system has been developed at the Centro de Investigación en Energía of the Universidad Nacional Autónoma de México. The system was evaluated with the ammonia/lithium nitrate/water (NH3/LiNO3/H2O) mixture. The system was designed to produce up to 8 kg/day of ice. The system consists of a Compound Parabolic Concentrator (CPC) with a cylindrical receiver acting as the generator/absorber; a condenser; an evaporator and an expansion valve. The system operates exclusively with solar energy and no moving parts are required. Evaporator temperatures as low as - 11°C were obtained for a period of time up to 8 hours. Coefficients of performance as high as 0.098 were obtained. These coefficients were 24% higher than those obtained with the same system operating with the binary ammonia/lithium nitrate (NH3/LiNO3) mixture previously reported in the literature. The results showed that the developed system seems to be a good alternative for refrigeration in zones where electricity is not available.

Keywords

Solar cooling; absorption systems; ice production; ammonia/lithium nitrate/water

References

[1] A. Erhard; K. Spindler; T. Hahne; Test and simulation of a solar powered solid sorption cooling machine; Int. J. Refrigeration 21(2); 1998; pp. 133-141. doi: 10.1016/S0140-7007(97)00065-0.

[2] R. Z. Wang; Y. X. Xu; J. Y. Wu; M. Li; H. B. Shou; Research on a combined adsorption heating and cooling system; Applied Thermal Engineering 22; 2002; pp. 603–617. doi: 10.1016/S1359-4311(01)00113-2.

[3] M. Li; R. Z. Wang; Y. X. Xu; J. Y. Wu; A.O. Dieng; Experimental study on dynamic performance analysis of a flat-plate solar solid-adsorption refrigeration for ice maker; Renewable Energy 27; 2002; pp. 211–221. doi: 10.1016/S0960-1481(01)00188-4.

[4] C.Hildbrand; P Dind; M. Pons; F. Buchter; A new solar powered adsorption refrigerator with high performance. Solar Energy 77; 2004; pp. 311–318. doi: 10.1016/j.solener.2004.05.007.

[5] N. M. Khattab; A novel solar-powered adsorption refrigeration module; Applied Thermal Engineering 24; 2004; pp. 2747–2760. doi: 10.1016/j.applthermaleng.2004.04.001.

[6] M. Li; C. J. Sun; R. Z Wang; W. D Cai; Development of no valve solar ice maker; Applied Thermal Engineering 2004;24:865–872. doi: 10.1016/j.applthermaleng.2003.10.002.

[7] W. Rivera; G. Moreno-Quintanar; C. O Rivera; R. Best; F. Martínez; Evaluation of a solar intermittent refrigeration system for ice production operating with ammonia/lithium nitrate; Solar Energy 85(1); 2011; pp. 38-45. doi: 10.1016/j.solener.2010.11.007.

[8] S. Libotean; D. Salavera; M. Valles; J. Esteve; A. Coronas; Vapor-liquid equilibrium of ammonia+lithium nitrate+water and ammonia+lithium nitrate solution from (293.15 to 353.15) K; Journal Chemical and Engineering Data 52; 2007; pp. 1050–1055. doi: 10.1021/je7000045.

[9] S. Libotean; D. Salavera; M. Valles; J. Esteve; A. Coronas; Densities; viscosities; and heat capacities of ammonia + lithium nitrate and ammonia + lithium nitrate + water solutions between (293.15 to 353.15) K; Journal Chemical and Engineering Data 53; 2008; pp. 2383–2393. doi: 10.1021/je8003035.

Citations in Crossref