Conference article

Auto-Extraction of Modelica Code from Finite Element Analysis or Measurement Data

The-Quan Pham
OptiY e.K., Aschaffenburg, Germany

Alfred Kamusella
Technische Universität Dresden, Institute of Electromechanical and Electronic Design, Germany

Holger Neubert
Technische Universität Dresden, Institute of Electromechanical and Electronic Design, Germany

Download articlehttp://dx.doi.org/10.3384/ecp11063668

Published in: Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical Univeristy; Dresden; Germany

Linköping Electronic Conference Proceedings 63:74, s. 668-672

Show more +

Published: 2011-06-30

ISBN: 978-91-7393-096-3

ISSN: 1650-3686 (print), 1650-3740 (online)

Abstract

This paper presents a new approach to extract Modelica codes from finite element analysis or measurement data automatically. The finite element model or the real system on the test bench is adaptively sam-pled while applying the Gaussian process with a few number of model calculations or measurement points. Based on these support points; a meta- or surrogate model of the system is built. Thus; Modelica codes can be generated automatically. These algorithms are implemented in the multidisciplinary design software OptiY®. Its application is demonstrated on the example of an electromagnetic actuator.

Keywords

Gaussian Process; Kriging; Surrogate Modeling; Meta Modeling

References

[1] Rasmussen C. E.; Williams C. K. I.: Gaus-sian Process for Machine Learning. MIT Press 2006.

[2] Santner; T. J.; Williams; B. J.; Notz; W. I.: The Design and Analysis of Computer Experiment. Springer New York 2003. doi: 10.1007/978-1-4757-3799-8.

[3] Sacks J.; Welch W. J.; Mitchell T. J.; Wynn H. P.: Design and Analysis of Computer Experiments. Statistical Science 4; pp. 409-435; 1989. doi: 10.1214/ss/1177012413.

[4] Jones; R. D.: A Taxonomy of Global Optimization Methods Based on Response Surfaces. Journal of Global Optimization 21: 345-383; 2001. doi: .

[5] Xiong; Y.; Chen; W; and Tsui; K.: A New Variable Fidelity Optimization Framework Based on Model Fusion and Objective-Oriented Sequential Sampling. ASME Jour-nal of Mechanical Design ; 130 (11); 2008

[6] Antuolas; A. C.: Approximation of Large-Scale Dynamical Systems. SIAM 2005

[7] OptiY Software and Documentation. www.optiy.eu

[8] http://www.optiyummy.de/index.php/Software:_FEM_-_Tutorial_-_Magnetfeld; see Kennfeld-Export als Modelica-Code

[9] SimulationX Software and Documentation. www.iti.de

[10] FEMM Software and Documentation. www.femm.info

Citations in Crossref