Conference article

Plenary lecture: Flame; Detonation; Explosion - When; Where; and How They Occur

Michael Liberman
Department of Physics, Uppsala University, Sweden

Download article

Published in: Proceedings from the Third International Disposal Conference; Karlskoga; Sweden; 10-11 November; 2003

Linköping Electronic Conference Proceedings 9:1, p. 5–23

Show more +

Published: 2003-11-07


ISSN: 1650-3686 (print), 1650-3740 (online)


Combustion is also involved in explosions for both peaceful and military purposes. In the past decades; there has been a considerable progress in understanding combustion processes and regimes of the combustion propagation. This review focuses solely on explaining various phenomena of premixed combustion: (1) flame propagation; (2) detonation waves; (3) when and how explosions occur; (4) the transition from flame to detonation and (5) when ignition of combustion involves phases of deflagration or detonation. Additionally; the paper will include a discussion of what pollutants are produced during combustion and how clean and efficient combustion can be achieved. Examples of typical combustion scenarios; including flames propagating in tubes; closed chambers or engines are overviewed; along with events of the thermonuclear Supernova.

Results obtained during past decades on the dynamics of flames; the understanding of the nature of burning and mathematical descriptions and numerical modelling of combustion are outlined. I shall talk about such prominent scientists as Yakob Zel’dovich and Lev Landau who were at the origin of modern combustion theory and made fundamental contributions to the understanding of combustion.


No keywords available


Barenblatt G.I.; Zeldovich Ya.B.; and Istratov A.G. (1962) Prikl. Mech. Tekn. Fiz. 2; 21.

Blinnikov S.I. and Sasorov P.V. (1996) Phys. Rev. E 53; 4827.

Bravo E. and Garcia-Senz D. (1995) Astroph. J. 450; L17.

Bychkov V.V. and Liberman M.A. (1994) Phys. Rev. Lett. 73; 1998.

Bychkov V.V. and Liberman M.A. (1995) Astron. Astroph. 302; 727.

Bychkov V.V. and Liberman M.A. (1995) Astroph. J. 451; 711.

Bychkov V.V. and Liberman M.A. (1995) Astron. Astroph. 304; 440.

Bychkov V.V. and Liberman M.A. (1996) Phys. Rev. Lett. 76; 2814.

Bychkov V.V.; Golberg S.M.; Liberman M.A. and L.E. Eriksson (1996) Phys. Rev. E 54; 3713.

Bychkov V.V. and Liberman M.A. (1997) Phys. Rev. Lett. 78; 1371.

Bychkov V.V. and Liberman M.A. (1997a) J. Exp. Theor. Phys. 84; 281.

Bychkov V.V.; Kleev A.I.; Liberman M.A.; and Golberg S.M. (1997) Phys. Rev.E 56; R36.

Bychkov V.V.; Golberg S.M.; Liberman M.A. and Kleev A.I.; (1997a) Comb. Sci. Tech. 129; 217.

Bychkov V.V.; Kleev A.I.; and Liberman M.A. (1998) Comb. Flame 113; 470.

Bychkov V.V. and Liberman M.A. (2000) Physics Reports; 325; No.4-5.

Clavin P. and Williams F.A. (1982) J. Fluid Mech. 116; 251.

Darrieus; G. (1945) Propagation d’un front de flamme; presented at Le congres de mecanique appliquèe; unpublished.

Denet B. and Haldenwang P. (1995) Comb. Sci. Tech. 104; 143.

Erpenbeck J.J. (1962) Phys. Fluids 5; 604.

Filiand L.; Sivashinsky G.I. and Frankel M.L. (1994) Physica D72; 110.

Frankel M.L. and Sivashinsky G.I. (1982) Comb.Sci.Tech. 29; 207.

Galanti B.; Kupervasser O.; Olami Z.; and Procaccia I. (1998) Phys. Rev. Lett. 80; 2477.

Gostintsev Y.A.; Istratov A.G. and Shulenin Y.V. (1988) Comb. Expl. Shock Waves 24; 70.

He L. and Lee J.H.S. (1995) Phys. Fluids 7; 1151.

Hewson J. C.; Bollig M. (1996) Reduced mechanisms for NOx emissions from hydrocarbon diffusion flames. Twenty-sixth Symposium (International) on Combustion. The Combustion Institute; Pittsburgh; p. 2171.

Hewson J. C.; Williams F. A. (1999) Combust Flame; 117; 441.

Kazakov K. A. and Liberman; M. A. (2002-a) Phys. Rev. Letters 88; 064502-1.

Kazakov K. A. and Liberman; M. A. (2002-b) (Phys. Fluids 14; 1166.

Kazakov K. A. and Liberman; M. A. (2002-c) Comb. Sci. Tech. 174; 157.

Kriminski S.A.; Bychkov V.V. and Liberman M.A. (1998) New Astron. 3; 363.

Kupervasser O.; Olami Z.; and Procaccia I. (1996) Phys. Rev. Lett. 76; 146.

Landau L.D.; Acta Physicochimica (URSS) 19; 77 (1944).

Landau L.D. and Lifshitz E.M. (1987) Fluid Mechanics; Pergamon Press; Oxford

Liberman M.A.; Bychkov V.V.; Golberg S.M. (1993) J. Exp. Theor. Phys. 77; 227.Liberman M.A.; Bychkov V.V.; Golberg S.M. and Book D.L. (1994) Phys.Rev. E 49; 445.

Liberman M.A.; Golberg S.M.; Bychkov V.V.; and Eriksson L.E.; (1998) Comb. Sci. Tech.; 136; 221.

Liberman M.A.; Valiev D.; Phys. Rev. E (2003) in press.

Mandelbrot B.B. (1983) The Fractal Geometry of Nature; Freeman; San Francisco

Manheimer W.H.; Colombant D.G.; and Gardner G.H. (1982) Phys. Fluids 25; 1644

Manheimer W.M. and Colombant D.R. (1984) Phys. Fluids 27; 983

Pelce P. and Clavin P. (1982) J. Fluid Mech. 124; 219.

Rahibe Z.; Aubry N.; Sivashinsky G. and Lima R. (1995) Phys. Rev. E 52; 3675.

Shelkin K.I. (1940) Zh. Eksp. Teor. Fiz. 10; 823.

Sivashinsky G.I. (1977) Acta Astronaut. 4; 1177.

Timmes F.X. and Woosley S.E. (1992) Astroph. J. 396; 649.

Travnikov O.Yu.; Liberman M.A.; and Bychkov V.V. (1997) Phys. Fluids 9; 3935.

Zaidel R.M. (1961) Doklady AN SSSR 136; 1142.

Zaidel R.M. and Zeldovich Ya.B. (1963) Prikl. Mech. Tekh. Fiz. 6; 59.

Zeldovich Ya.B. and Frank-Kamenetski D. A. (1938) Acta Physicochimica URSS 9; 341.

Zeldovich Ya.B. and Rozlovski A.I. (1947) Doklady Acad. Nauk SSSR 57; 365.

Zeldovich Ya.B.(1966) Prikl. Mekh. Tekh. Fiz. N.1; 102.

Zel’dovich YB; Frank-Kamenetskii DA. Zhur Fiz Khim (1938) 12; 110.

Zel’dovich YB; Semenov NN. Zhur Eksp Teor Fiz (1940) 10; 1427.

Zeldovich Ya.B. (1980) Comb. Flame 39; 211

Zeldovich Ya.B.; Istratov A.G.; Kidin N.I. and Librovich V.B. (1980) Comb. Sci. Tech. 24; 1

Zeldovich Ya.B.; Barenblatt G.I.; Librovich V.B.; Makhviladze G.M. (1985) The Mathematical Theory of Combustion and Explosion; Consultants Bureau; NY.

Williams F. A. (1985) Combustion Theory; 2nd ed.; Benjamin/Cummings; Menlo Park; California.

Citations in Crossref