Konferensartikel

Coalesced Gas Turbine and Power System Modeling and Simulation using Modelica

Miguel Aguilera
Instituto Costarricense de Electricidad (ICE), Costa Rica

Luigi Vanfretti
Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute (RPI), USA

Tetiana Bogodorova
Ukrainian Catholic University, Faculty of Applied Sciences, Lviv, Ukraine

Francisco Gómez
KTH Royal Institute of Technology, Stockholm, Sweden

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp1815493

Ingår i: Proceedings of The American Modelica Conference 2018, October 9-10, Somberg Conference Center, Cambridge MA, USA

Linköping Electronic Conference Proceedings 154:10, s. 93-102

Visa mer +

Publicerad: 2019-02-26

ISBN: 978-91-7685-148-7

ISSN: 1650-3686 (tryckt), 1650-3740 (online)

Abstract

This work reports how the multi-domain physical modeling and simulation Modelica language has been employed to create a benchmark power grid and gas turbine model within the ITEA3 OpenCPS project. The modeling approach is not only shown to be useful to test the functionalities of the OpenCPS toolchains, but it also could give rise to potential applications in power system domain studies where the widely-accepted turbinegovernor models are not rich enough to represent the multi-domain system dynamics.

Nyckelord

Gas turbine modeling, Modelica, Multidomain modeling and simulation, Power systems, OpenIPSL, ThermoPower

Referenser

Aguilera, M., Vanfretti, L., & Gómez, F. (2018). Experiences in power system multi-domain modeling and simulation with modelica & FMI: The case of gas power turbines and power systems. In 2018 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES) (pp. 1–6). IEEE. https://doi.org/10.1109/MSCPES.2018.8405397

Baudette, M., Castro, M., Rabuzin, T., Lavenius, J., Bogodorova, T., & Vanfretti, L. (2018). Open-Instance Power System Library Update 1.5 to "iTesla Power Systems Library (iPSL): A Modelica library for phasor time-domain simulations. SoftwareX. https://doi.org/10.1016/j.softx.2018.01.002

Baur, M., Otter, M., & Thiele, B. (2009). Modelica Libraries for Linear Control Systems LinearSystems library. Proceedings of the 7th International Modelica Conference, 20–22.

Braun, W., Casella, F., & Bachmann, B. (2017). Solving large-scale Modelica models: new approaches and experimental results using OpenModelica. In Proceedings of the 12th International Modelica Conference, Prague, Czech Republic, May 15-17, 2017 (pp. 557–563).

Carnegie Mellon University. (2013). Managing Variable Energy Resources to Increase Renewable Electricity’s Contribution to the Grid.

Casella, F. (2009). Object-oriented modelling of power plants: a structured approach. IFAC Proceedings Volumes, 42(9), 249–254.

Casella, F., & Leva, A. (2003). Modelica open library for power plant simulation: design and experimental validation. In Proceeding of the 2003 Modelica conference, Linkoping, Sweden.

Casella, F., Leva, A., & Bartolini, A. (2017). Simulation of Large Grids in OpenModelica: reflections and perspectives, 227–233.

CEN-CENELEC-ETSI Smart Grid Coordination Group. (2012). Smart Grid Reference Architecture, (November), 1–46. Retrieved from ftp://ftp.cencenelec.eu/EN/EuropeanStandardization/HotTopics/SmartGrids/Reference_Architecture_final.pdf

Dassault Systemes. (2018). Dymola Sparse Solvers for Large-Scale Simulations.

De Mello, F. P., & Ahner, D. J. (1994). Dynamic models for combined cycle plants in power system studies. IEEE Transactions on Power Systems, 9(3).

El-Hefni, B., Bouskela, D., & Lebreton, G. (2011). Dynamic Modelling of a Combined Cycle Power Plant with ThermoSysPro. Proceedings of the 9th Modelica Conference, 365–375.

Gómez, F. J., Vanfretti, L., & Olsen, S. H. (2015). Binding cim and modelica for consistent power system dynamic model exchange and simulation. In Power & Energy Society General Meeting, 2015 IEEE (pp. 1–5).

Gomez, F., Vanfretti, L., & Olsen, S. H. (2018). CIMCompliant Power System Dynamic Model-to-Model Transformation and Modelica Simulation. IEEE Transactions on Industrial Informatics, 3203(c), 1–1. https://doi.org/10.1109/TII.2017.2785439

Hannett, L. N., & Khan, A. H. (1993). Combustion turbine dynamic model validation from tests. IEEE Transactions on Power Systems, 8(1), 152–158.

Hübel, M., Berndt, A., Meinke, S., Richter, M., Mutschler, P., Hassel, E., … Funkquist, J. (2014). Modelling a lignite power plant in modelica to evaluate the effects of dynamic operation and offering grid services. In Proceedings of the 10 th International Modelica Conference; March 10-12; 2014; Lund; Sweden (pp. 1037–1046).

Idebrant, A., Näs, L., Ab, M. E., Industrial, A., Ab, T., Bachmann, B., … Fritzson, P. (2003). Gas Turbine Applications using ThermoFluid. Proceedings of the 3rd International Modelica Conference.

IEA. (2016). Energy, Climate Change & Environment - 2016 Insights.

ITEA3. (2017). OpenCPS - Open Cyber-Physical System Model-Drive Certified Development. Retrieved June 19, 2017, from https://itea3.org/project/opencps.html

Johansson, T. (2016). Simulation of gas channel temperatures during transients for SGT-800.

Nicolet, C., Sapin, A., Simond, J. J., Prenat, J. E., & Avellan, F. (2001). A new tool for the simulation of dynamic behaviour of hydroelectric power plants. In Proceedings of the 10th International Meeting of WG1, IAHR, Trondheim, Norway.

Pereira, L., Undrill, J., Kosterev, D., Davies, D., & Patterson, S. (2003). A new thermal governor modeling approach in the WECC. IEEE Transactions on Power Systems, 18(2), 819–829.

Pourbeik, P. (2013). Dynamic models for turbinegovernors in power system studies. IEEE Task Force on Turbine-Governor Modeling.

Razak, A. M. Y. (2007). Industrial gas turbines: performance and operability. Elsevier.

Rowen, W. I. (1983). Simplified mathematical representations of heavy-duty gas turbines. Journal of Engineering for Power, 105(4), 865–869.

Rowen, W. I. (1992). Simplified mathematical representations of single shaft gas turbines in mechanical drive service. In ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition (p. V005T15A001--V005T15A001).

Sapin, A. (1995). Logiciel modulaire pour la simulation et l" étude des systèmes d’entraînement et des réseaux électriques.

Siemens AG. (2018). PSS®E – high-performance transmission planning and analysis software. Retrieved from https://www.siemens.com/l

Vanfretti, L., Li, W., Bogodorova, T., & Panciatici, P. (2013). Unambiguous power system dynamic modeling and simulation using modelica tools. In Power and Energy Society General Meeting (PES), 2013 IEEE (pp. 1–5).

Vanfretti, L., Olsen, S. H., Arava, V. S. N., Laera, G., Bidadfar, A., Rabuzin, T., … Gómez-López, F. J. (2017). An open data repository and a data processing software toolset of an equivalent Nordic grid model matched to historical electricity market data. Data in Brief, 11, 349–357. https://doi.org/10.1016/j.dib.2017.02.021

Vanfretti, L., Rabuzin, T., Baudette, M., & Murad, M. (2016). iTesla Power Systems Library (iPSL): A Modelica library for phasor time-domain simulations. SoftwareX, 5, 84–88.

Walsh, P. P., & Fletcher, P. (2004). Gas turbine performance. John Wiley & Sons.

Yee, S. K., Milanovic, J. V, & Hughes, F. M. (2008). Overview and comparative analysis of gas turbine models for system stability studies. IEEE Transactions on Power Systems, 23(1), 108–118.

Citeringar i Crossref