Nora Cecilie Ivarsdatter Furuvik
Department of Process, Energy and Environmental Technology, University College of Southeast Norway, Norway
Britt M. E. Moldestad
Department of Process, Energy and Environmental Technology, University College of Southeast Norway, Norway
Ladda ner artikelhttp://dx.doi.org/10.3384/ecp17142842Ingår i: Proceedings of The 9th EUROSIM Congress on Modelling and Simulation, EUROSIM 2016, The 57th SIMS Conference on Simulation and Modelling SIMS 2016
Linköping Electronic Conference Proceedings 142:124, s. 842-848
Publicerad: 2018-12-19
ISBN: 978-91-7685-399-3
ISSN: 1650-3686 (tryckt), 1650-3740 (online)
CO2-EOR is an attractive method because of its potential to increase the oil production from matured oilfields, at the same time reduce the carbon footprint from the industrial sources. The field response to the CO2-EOR technique depends on the petrophysical properties of the reservoir. Carbonate reservoirs are characterized by low permeability and strong heterogeneity, causing significant amounts of water and CO2 to be recycled when CO2 is re-injected into the reservoir. Naturally fractured carbonate reservoirs have low oil production, high water production, early water breakthrough and high water cut. This study focuses on the oil production and the CO2 recycle ratio in naturally fractured carbonate reservoirs, including near-well simulations using the reservoir software Rocx in combination with OLGA. The simulations indicate that closing the fractured zone causes delayed water breakthrough and dramatically reduced water cut, resulting in improved oil recovery as well as lower production and separation costs.
Inga referenser tillgängliga