Moritz Lauster
RWTH Aachen University, E.ON Energy Research Center, Institute for Energy Efficient Buildings and Indoor Climate, Aachen, Germany
Peter Remmen
RWTH Aachen University, E.ON Energy Research Center, Institute for Energy Efficient Buildings and Indoor Climate, Aachen, Germany
Marcus Fuchs
RWTH Aachen University, E.ON Energy Research Center, Institute for Energy Efficient Buildings and Indoor Climate, Aachen, Germany
Jens Teichmann
RWTH Aachen University, E.ON Energy Research Center, Institute for Energy Efficient Buildings and Indoor Climate, Aachen, Germany
Rita Streblow
RWTH Aachen University, E.ON Energy Research Center, Institute for Energy Efficient Buildings and Indoor Climate, Aachen, Germany
Dirk Müller
RWTH Aachen University, E.ON Energy Research Center, Institute for Energy Efficient Buildings and Indoor Climate, Aachen, Germany
Ladda ner artikelhttp://dx.doi.org/10.3384/ecp14096125Ingår i: Proceedings of the 10th International Modelica Conference; March 10-12; 2014; Lund; Sweden
Linköping Electronic Conference Proceedings 96:13, s. 125-133
Publicerad: 2014-03-10
ISBN: 978-91-7519-380-9
ISSN: 1650-3686 (tryckt), 1650-3740 (online)
There are different options for modelling indoor and outdoor long-wave radiation exchange in thermal building models for simulations at urban scale. For improving these building models; a good trade-off between accuracy and simulation time is a major challenge. To evaluate different radiation models for thermal network building models; we compared four outdoor radiation and two indoor radiation models.
For the comparison; we set-up three test cases on a generic room and a single family dwelling and analysed surface temperatures; heat demands and simulation times. The results favoured an outdoor radiation exchange model according to the German Guideline VDI 6007 with modified parameter calculations. It includes important simplifications that lead to short computing time while keeping a sufficient accuracy. For indoor radiation exchange modelling at constant temperatures; a linear approach significantly reduces simulation time without any major accuracy losses.
Thermal network building model;equivalent outdoor temperature; long-wave radiation exchange; building performance simulation
[1] Hensen J, Lamberts R. Building performance simulation for design and operation. Abingdon, Oxon, New York, NY: Spon Press; 2011.
[2] Clarke JA. Energy simulation in building design. 2nd ed. Oxford: Butterworth-Heinemann; 2001.
[3] Robinson D (ed.). Computer modelling for sustainable urban design: Physical principles, methods and applications. 1st ed. London: Earthscan; 2011.
[4] Kämpf JH, Robinson D. A simplified thermal model to support analysis of urban resource flows. Energy and Buildings 2007;39(4):445–53. DOI: 10.1016/j.enbuild.2006.09.002
[5] Wetter M, van Treek C. IEA EBC Annex 60. [November 15, 2013]; Available from: http://www.iea-annex60.org/.
[6] Müller D, Hosseini Badakhshani A. Gekoppelte Gebäude- und Anlagensimulation. In: Proceedings BauSim Conference; 2010.
[7] Nytsch-Geusen C, Huber J, Ljubijankic M, Rädler J. Modelica Buildingsystems - eine Modellbibliothek zur Simulation komplexer energietechnischer Gebäudesysteme. In: Proceedings BauSim Conference 2012; 2012, p. 271–278.
[8] Wetter M, Zuo W, Nouidui TS. Recent Developments of the Modelica "Buildings" Library for Building Energy and Control Systems. In: Proceedings 8th Modelica Conference; 2011, p. 266–275.
[9] Bonvini M, Leva A. Exploiting Object-Oriented Modelling for Scalable-Detail Studies on Control for Energy Efficiency. In: Proceedings 2012.
IEEE Multi-conference on Systems and Control; 2012, p. 770–775.
[10] German Association of Engineers. Calculation
of transient thermal response of rooms and buildings - Modelling of rooms;91.140.10(VDI
6007-1). Düsseldorf: Beuth Verlag GmbH; 2012.
[11] Lauster M, Teichmann J, Fuchs M, Streblow R, Mueller D. Low order thermal network models for dynamic simulations of buildings on city district scale. Building and Environment 2014;73:223–31. DOI: 10.1016/j.buildenv.2013.12.016
[12] American Society of Heating, Refrigerating and Air-Conditioning Engineers. Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs(ASHRAE 140-2007). Atlanta: ANSI/ASHRAE; 2007.
[13] Shi Z, Zhang X. Analyzing the effect of the longwave emissivity and solar reflectance of building envelopes on energy-saving in buildings in various climates. Solar Energy 2011;85(1):28–37. DOI: 10.1016/j.solener.2010.11.009
[14] German Association of Engineers. Environmental Meteorology;13.040.10(VDI 3789-2). Düsseldorf: Beuth Verlag GmbH; 1994.
[15] Christoffer T, Deutschländer M., Webs M. Testreferenzjahre von Deutschland für mittlere und extreme Witterungsverhältnisse TRY. Deutscher Wetterdienst, Offenbach 2004. [16] EnergyPlus Development Team. EnergyPlus Engineering Documentation. [November 15, 2013].
[17] Müller E. Development of a test reference year on a limited data base for simulations on passive heating and cooling in Chile. In: Proceedings Building Simulation Conference; 2001.
[18] Nehring G. Über den Wärmefluß durch Außenwände und Dächer in klimatisierten Räumen infolge der periodischen Tagesgänge der bestimmenden meteorologischen Elemente. Gesundheits Ingenieur 1962;83(7):185–216.
[19] Mackey CO, Wright LT, Ithaca NY. Periodic heat flow - homogeneous walls or roofs. Transactions American Society of Heating and Ventilating Engineers 1944(50):293–312.
[20] German Association of Engineers. Cooling Load Calculation of Air-conditioned Rooms;91.140.30(VDI 2078-1). Düsseldorf: Beuth Verlag GmbH; 1996.
[21] German Association of Engineers. VDI heat atlas. 2nd ed. Heidelberg: Springer; 2010.
[22] Lauster M, Streblow R, Müller D. Modelica-Bibliothek und Gebäudemodelle. In: Proceedings Symposium Integrale Planung und Simulation in Bauphysik und Gebäudetechnik: 26.03. - 28.03.2012, Technische Universität Dresden;
2012.
[23] Norbert Nadler. Validierung des Rechenkerns der C.A.T.S.-Kühllastberechnung anhand der neuen VDI 6007-1. HLH Lüftung/Klima - Heizung/Sanitär - Gebäudetechnik 2013;64(1):36–41.