Konferensartikel

BECCS in South Korea - An Analysis of Negative Emissions Potential for Bioenergy as a Mitigation Tool

Kwang Il Tak
Forestry Department, Kookmin University, Seoul, Republic of Korea

Florian Kraxner
Forestry Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria

Kentaro Aoki
Forestry Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria

Sylvain Leduc
Forestry Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria

Georg Kindermann
Forestry Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria

Jue Yang
Center for Global Environmental Research (CGER), National Institute for Environmental Studies (NIES), Japan

Yoshiki Yamagata
Center for Global Environmental Research (CGER), National Institute for Environmental Studies (NIES), Japan

Michael Obersteiner
Forestry Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp11057676

Ingår i: World Renewable Energy Congress - Sweden; 8-13 May; 2011; Linköping; Sweden

Linköping Electronic Conference Proceedings 57:14, s. 676-683

Visa mer +

Publicerad: 2011-11-03

ISBN: 978-91-7393-070-3

ISSN: 1650-3686 (tryckt), 1650-3740 (online)

Abstract

The objective of this study is to analyze the in-situ BECCS capacity for green field bioenergy plants in South Korea. A technical assessment is used to support a policy discussion on the suitability of this mitigation tool. We first examined the technical potential of bioenergy production from domestic forest biomass. For this exercise; in a first step; the biophysical Global Forestry Model G4M was applied in order to estimate the biomass availability. In a second step; the biomass results from the forestry model were used as input data for an engineering model (BeWhere) for optimized scaling and locating of coupled heat and power plants (CHP). The obtained geographically explicit locations and capacities for forest-based bioenergy plants were then overlaid with a geological suitability map for carbon storage. From this; a theoretical potential for in-situ BECCS was derived. Results indicated that; given the abundant forest cover in South Korea; there is a substantial potential for bioenergy production which could contribute to substituting emissions from fossil fuels and to meeting the targets of the country’s commitments under any climate change mitigation agreement. However; there seems to be only limited potential for direct in-situ carbon storage in South Korea.

Nyckelord

BECCS; Bioenergy; Carbon Capture and Storage; Biomass modeling; Energy policy

Referenser

Inga referenser tillgängliga

Citeringar i Crossref