Karin Kraft
Mathematical Sciences, Chalmers University of Technology, Sweden \ Göteborg University, Sweden
Stig Larsson
Mathematical Sciences, Chalmers University of Technology, Sweden \ Göteborg University, Sweden
Mathias Lidberg
Applied Mechanics, Chalmers University of Technology, Sweden
Ladda ner artikelIngår i: The 48th Scandinavian Conference on Simulation and Modeling (SIMS 2007); 30-31 October; 2007; Göteborg (Särö)
Linköping Electronic Conference Proceedings 27:15, s. 126-133
Publicerad: 2007-12-21
ISBN:
ISSN: 1650-3686 (tryckt), 1650-3740 (online)
The optimal manoeuvering of a vehicle during a collision avoidance manoeuvre is investigated. A simple model where the vehicle is modelled as point mass and the mathematical formulation of the optimal manoeuvre are presented. The resulting two-point boundary problem is solved by an adaptive finite element method and the theory behind this method is described.
Vehicle dynamics; collision avoidance manoeuvre; optimal control; boundary value problem; adaptive finite element method.
[1] National Highway Traffic Safety Administration; Laboratory Test Instruction for FMVSS 126 Stability Control Systems; http://www.nhtsa.dot.gov.
[2] C. Andersson; Solving optimal control problems us- ing FEM; Master’s thesis; Chalmers University of Technology; 2007.
[3] U. M. Ascher; R. M. M. Mattheij; and R. D. Russell; Numerical Solution of Boundary Value Prob- lems for Ordinary Differential Equations; first ed.; Prentice-Hall Inc.; Englewood Cliffs; New Jersey; 1988.
[4] J. T. Betts; Survey of numerical methods for trajectory optimization; AIAA J. Guidance Control Dynam. 21 (1998); 193–207.
[5] S. C. Brenner and L. R. Scott; The Mathemati- cal Theory of Finite Element Methods; second ed.; Springer-Verlag; New York; 2002.
[6] A. E. Bryson; Jr and Y. Ho; Applied Optimal Con- trol; revised printing ed.; Hemisphere Publishing Corporation; Washington; D.C; 1975.
[7] P. Deuflhard and F. Bornemann; Scientific Computing with Ordinary Differential Equations; Springer-Verlag New York Inc.; New York; 2002.
[8] D. J. Estep; D. H. Hodges; and M.Warner; Computational error estimation and adaptive error control for a finite element solution of launch vehicle trajectory problems; SIAM J. Sci. Comput. 21 (1999); 1609– 1631.
[9] H. B. Keller; Numerical Methods for Two-Point Boundary-Value Problems; Dover Publications; Inc.; New York; 1992.
[10] B. Schmidtbauer; Sv¨ang och bromsa samtidigt (in Swedish); Teknisk Tidskrift (1971).
[11] L. F. Shampine; J. Kierzenka; and M. W.Reichelt; Solving Boundary Value Problems for Ordinary Differential Equations in Matlab using bvp4c; Tech. report; MathWorks; 2000; http://www.mathworks.com. 133