Konferensartikel

Dynamic Model of a Bubbling Fluidized Bed Boiler

Yrjö Majanne
Tampere University of Technology, Institute of Automation and Control, Finland

Tuomas Kataja
Tampere University of Technology, Institute of Automation and Control, Finland

Ladda ner artikel

Ingår i: The 48th Scandinavian Conference on Simulation and Modeling (SIMS 2007); 30-31 October; 2007; Göteborg (Särö)

Linköping Electronic Conference Proceedings 27:17, s. 140-149

Visa mer +

Publicerad: 2007-12-21

ISBN:

ISSN: 1650-3686 (tryckt), 1650-3740 (online)

Abstract

A dynamic model for a high-volatile solid fuel fired bubbling fluidized bed boiler is presented. The model consist of an air-flue gas model which includes a furnace model describing combustion in a bubbling fluidized bed and a model for a water-steam circuit describing heat transfer from hot flue gases to water and steam. The versatile furnace model takes account of quality parameters of fuel so that the effects of moisture; particle size; heat value; and the amount of volatiles can be simulated. The model is based on the first principles mass; energy; and momentum balances. Results from validation of the model against a bubbling fluidized bed boiler process data are presented. The validation showed that the model can describe the dynamics and static gains of the process very well.

Nyckelord

Dynamic boiler model; bubbling fluidized bed combustion

Referenser

Adam EJ & Marchetti L. (1999). Dynamic simulation oflarge boilers with natural recirculation. Combust Chem Eng 1999;23:1031–40.

Basu; P. (2006). Combustion and gasification in fluidized beds. Boca Raton; CRC Press. 473 p.

Benoni; D.; Briens; C. L.; Baron; T.; Duchesne; E.; & Knowlton; T. M. (1994). A procedure to determine particle agglomeration in a fluidized bed and its effect on entrainment. Powder Technology; Vol 78; pp. 33-42.

Borman; G.L. & Ragland; K;W. (1998). Combustion engineering. Singapore; McGraw-Hill Inc. 613 p.

Cheres; E. (1990). Small and medium size drum boiler models suitable for long term dynamic response. IEEE Transactions on Energy Conversion; Vol. 5; No. 4; pp. 686–692

Chirone; R.; Marzocchella; A.; Salatino; P.; Scala; F. (1999) Fluidized bed combustion of high-volatile solid fuels: An assessment of char attrition and volatile matter segregation; Proceedings of the 15th International Conference on Fluidized Bed Combustion; Savannah; May 16–19; 1999; The American Society of Mechanical Engineers; Paper No. FBC99-0021.

Chien; K. L.; Ergin; E. I.; Ling; C.; &Lee; A. (1958). Dynamic analysis of a boiler. Transactions of ASME; 80; 1809–1819.

Cori; R.; & Busi; T. (1977). Parameter identification of a drum boiler power plant. Proc. 3rd Power Plant Dynamics; Control and Testing Symposium; Knoxwille; Tennessee; September 7-9; 1977.

Darton; R.C.; La Nauze; J-F.; Davidson; J.F. & Harrison; D. (1977). Bubble growth due to coalescence in fluidized beds. Transactions of the Institution of Chemical Engineers; Vol 55; pp. 274-280.

de Diego; L.F.; Garcia-Labiano; F.; Abad; A.; Gayan; P. & Adanez; J. (2003). Effect of moisture content on devolatilization times of pine wood particles in a fluidized bed. Energy & Fuels; Vol. 17; No.2; pp. 285-290.

Galgano; A.; Salatino; P.; Crescitelli; S.; Scala; F. & Maffettone; P.L. (2005). A model of the dynamics of a fluidized bed combustor burning biomass. Combustion and flame Vol.140; No.4; pp. 271–284.

Kim; H. & Choi; S. (2005). A model on water level dynamics in natural circulation drum-type boilers. Heat and mass transfer; Vol. 32; pp. 786–796.

Maffezzoni; C. (1992). Issues in modeling and simulation of power plants. In Proceedings of IFAC symposium on control of power plants and power systems; Vol. 1; pp. 19–27

McDonald; J. P.; & Kwatny; H. G. (1970). A mathematical model for reheat boiler–turbine–generator systems. In Proceedings of IEEE. PES winter power meeting; New York. Paper 70 CP221-PWR.

de Mello; F. P. (1991). Boiler models for system dynamic performance studies. IEEE Transactions on Power Systems; Vol 6; No. 1; pp. 753–761

Mickey; H.S. & Fairbanks; D.F. (1955). Mechanism of heat transfer to fluidized beds. AICHE J; Vol.1; pp. 374– 384.

Oka; S. (2004). Fluidized bed Combustion. New York; Marcel Dekker; Inc. 590 p.

Okasha; F. (2007). Modeling combustion of strawbitumen pellets in a fluidized bed. Fuel Processing Technology; Vol 88; pp. 281-293.

Ordys; A.W.; Pike; A.W.; Johnson; M.A.; Katebi; R.M. & Grimble M.J. (1994). Modelling and Simulation of Power Generation Plants. London; Springer-Verlag. 311 p.

Pemberton; S. T.; & Davidson; J. F. (1986). Elutriation from fluidized beds—I. Particle ejection from the dense phase into the freeboard. Chemical Engineering Science; Vol. 41; pp. 243-251.

Profos; P. (1962). Die Regelung von Dampfanlagen. Berlin: Springer.

Raiko; R.; Saastamoinen; J.; Hupa; M. & Kurki-Suonio; I.Poltto ja palaminen. 2nd ed. Jyväskylä 2002; Teknillistieteelliset akatemiat. 744 p.

Salatino; P.; Scala; F. & Chirone; R. Proc. of 27th Symp (Int.) on Combust.; Combustion Institute; Pittsburgh (PA) in press (1998)

Scala; F. & Chirone; R. (2006). Combustion and attrition of biomass in fluidized bed. Energy and fuels; Vol. 20; pp. 91-102.

Scala; F. & Salatino; P. (2002). Modelling fluidized bedcombustion of high-volatile solid fuels. Chemical engineering science; Vol. 57; pp. 1175-1196.

Scala; F.; Salatino; P. & Chirone; R. (2000). Fluidized bedcombustion of biomass char (robinia pseudoacacia). Energy & Fuels; Vol. 14; No.4; pp. 781-790.

Tasirin; S.M & Geldart; D. (1998). Enrainment of FCC from fluidized beds – a new correlation for the elutriation rate constants Ki8. Powder Technology; Vol. 95; pp. 240- 247.

Toomey; R.D. & Johnstone; H.F. (1952). Gaseous fluidization of solid particles. Chem Eng Prog; Vol. 48; pp. 220–226.

Wen; C.Y. & Yu; Y.W. (1966). Mechanics of fluidization. Eng. Progr. Symp. Series 100-125.

Yang; W-C. (2003). Handbook of fluidization and fluidparticle systems. New York. Marcel Dekker; Inc. 861 p.

Åström; K. J.; & Bell; R. (1988). Simple drum-boiler models. In IFAC international symposium on power systems; modelling and control applications. Brussels; Belgium.

Åström; K. J.; & Bell; R. (2000). Drum boiler dynamics. Automatica; 36; pp. 363–378

Citeringar i Crossref