Publicerad: 2007-12-21
ISBN:
ISSN: 1650-3686 (tryckt), 1650-3740 (online)
A dynamic model for a high-volatile solid fuel fired bubbling fluidized bed boiler is presented. The model consist of an air-flue gas model which includes a furnace model describing combustion in a bubbling fluidized bed and a model for a water-steam circuit describing heat transfer from hot flue gases to water and steam. The versatile furnace model takes account of quality parameters of fuel so that the effects of moisture; particle size; heat value; and the amount of volatiles can be simulated. The model is based on the first principles mass; energy; and momentum balances. Results from validation of the model against a bubbling fluidized bed boiler process data are presented. The validation showed that the model can describe the dynamics and static gains of the process very well.
Adam EJ & Marchetti L. (1999). Dynamic simulation oflarge boilers with natural recirculation. Combust Chem Eng 1999;23:1031–40.
Basu; P. (2006). Combustion and gasification in fluidized beds. Boca Raton; CRC Press. 473 p.
Benoni; D.; Briens; C. L.; Baron; T.; Duchesne; E.; & Knowlton; T. M. (1994). A procedure to determine particle agglomeration in a fluidized bed and its effect on entrainment. Powder Technology; Vol 78; pp. 33-42.
Borman; G.L. & Ragland; K;W. (1998). Combustion engineering. Singapore; McGraw-Hill Inc. 613 p.
Cheres; E. (1990). Small and medium size drum boiler models suitable for long term dynamic response. IEEE Transactions on Energy Conversion; Vol. 5; No. 4; pp. 686–692
Chirone; R.; Marzocchella; A.; Salatino; P.; Scala; F. (1999) Fluidized bed combustion of high-volatile solid fuels: An assessment of char attrition and volatile matter segregation; Proceedings of the 15th International Conference on Fluidized Bed Combustion; Savannah; May 16–19; 1999; The American Society of Mechanical Engineers; Paper No. FBC99-0021.
Chien; K. L.; Ergin; E. I.; Ling; C.; &Lee; A. (1958). Dynamic analysis of a boiler. Transactions of ASME; 80; 1809–1819.
Cori; R.; & Busi; T. (1977). Parameter identification of a drum boiler power plant. Proc. 3rd Power Plant Dynamics; Control and Testing Symposium; Knoxwille; Tennessee; September 7-9; 1977.
Darton; R.C.; La Nauze; J-F.; Davidson; J.F. & Harrison; D. (1977). Bubble growth due to coalescence in fluidized beds. Transactions of the Institution of Chemical Engineers; Vol 55; pp. 274-280.
de Diego; L.F.; Garcia-Labiano; F.; Abad; A.; Gayan; P. & Adanez; J. (2003). Effect of moisture content on devolatilization times of pine wood particles in a fluidized bed. Energy & Fuels; Vol. 17; No.2; pp. 285-290.
Galgano; A.; Salatino; P.; Crescitelli; S.; Scala; F. & Maffettone; P.L. (2005). A model of the dynamics of a fluidized bed combustor burning biomass. Combustion and flame Vol.140; No.4; pp. 271–284.
Kim; H. & Choi; S. (2005). A model on water level dynamics in natural circulation drum-type boilers. Heat and mass transfer; Vol. 32; pp. 786–796.
Maffezzoni; C. (1992). Issues in modeling and simulation of power plants. In Proceedings of IFAC symposium on control of power plants and power systems; Vol. 1; pp. 19–27
McDonald; J. P.; & Kwatny; H. G. (1970). A mathematical model for reheat boiler–turbine–generator systems. In Proceedings of IEEE. PES winter power meeting; New York. Paper 70 CP221-PWR.
de Mello; F. P. (1991). Boiler models for system dynamic performance studies. IEEE Transactions on Power Systems; Vol 6; No. 1; pp. 753–761
Mickey; H.S. & Fairbanks; D.F. (1955). Mechanism of heat transfer to fluidized beds. AICHE J; Vol.1; pp. 374– 384.
Oka; S. (2004). Fluidized bed Combustion. New York; Marcel Dekker; Inc. 590 p.
Okasha; F. (2007). Modeling combustion of strawbitumen pellets in a fluidized bed. Fuel Processing Technology; Vol 88; pp. 281-293.
Ordys; A.W.; Pike; A.W.; Johnson; M.A.; Katebi; R.M. & Grimble M.J. (1994). Modelling and Simulation of Power Generation Plants. London; Springer-Verlag. 311 p.
Pemberton; S. T.; & Davidson; J. F. (1986). Elutriation from fluidized beds—I. Particle ejection from the dense phase into the freeboard. Chemical Engineering Science; Vol. 41; pp. 243-251.
Profos; P. (1962). Die Regelung von Dampfanlagen. Berlin: Springer.
Raiko; R.; Saastamoinen; J.; Hupa; M. & Kurki-Suonio; I.Poltto ja palaminen. 2nd ed. Jyväskylä 2002; Teknillistieteelliset akatemiat. 744 p.
Salatino; P.; Scala; F. & Chirone; R. Proc. of 27th Symp (Int.) on Combust.; Combustion Institute; Pittsburgh (PA) in press (1998)
Scala; F. & Chirone; R. (2006). Combustion and attrition of biomass in fluidized bed. Energy and fuels; Vol. 20; pp. 91-102.
Scala; F. & Salatino; P. (2002). Modelling fluidized bedcombustion of high-volatile solid fuels. Chemical engineering science; Vol. 57; pp. 1175-1196.
Scala; F.; Salatino; P. & Chirone; R. (2000). Fluidized bedcombustion of biomass char (robinia pseudoacacia). Energy & Fuels; Vol. 14; No.4; pp. 781-790.
Tasirin; S.M & Geldart; D. (1998). Enrainment of FCC from fluidized beds – a new correlation for the elutriation rate constants Ki8. Powder Technology; Vol. 95; pp. 240- 247.
Toomey; R.D. & Johnstone; H.F. (1952). Gaseous fluidization of solid particles. Chem Eng Prog; Vol. 48; pp. 220–226.
Wen; C.Y. & Yu; Y.W. (1966). Mechanics of fluidization. Eng. Progr. Symp. Series 100-125.
Yang; W-C. (2003). Handbook of fluidization and fluidparticle systems. New York. Marcel Dekker; Inc. 861 p.
Åström; K. J.; & Bell; R. (1988). Simple drum-boiler models. In IFAC international symposium on power systems; modelling and control applications. Brussels; Belgium.
Åström; K. J.; & Bell; R. (2000). Drum boiler dynamics. Automatica; 36; pp. 363–378