Konferensartikel

Non Linear Dimension Reduction of Dynamic Model Output

Claire-Eleuthèriane Gerrer
Phimeca Engineering, France

Sylvain Girard
Phimeca Engineering, France

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp19157189

Ingår i: Proceedings of the 13th International Modelica Conference, Regensburg, Germany, March 4–6, 2019

Linköping Electronic Conference Proceedings 157:19, s. 8

Visa mer +

Publicerad: 2019-02-01

ISBN: 978-91-7685-122-7

ISSN: 1650-3686 (tryckt), 1650-3740 (online)

Abstract

Most advanced mathematical methods for the analysis of numerical model cannot cope with functional outputs of dynamic Modelica models. Principal component analysis is a well established method for dimension reduction, and can be used to tackle this issue. It relies however on a linear hypothesis that limits its applicability. We illustrate on a case study how the non linear method of autoassociative model overcomes this shortcoming and provides physically interpretable data representations.

Nyckelord

dimension reduction, functional data analysis, FMI, OtFMI, principal component analysis, autoassociative model, sensitivity analysis

Referenser

Inga referenser tillgängliga

Citeringar i Crossref