Jayalakshmi Baskar
Department of Computing Science, Umeå, Sweden
Helena Lindgren
Department of Computing Science, Umeå, Sweden
Dipak Surie
Department of Computing Science, Umeå, Sweden
Chunli Yan
Department of Computing Science, Umeå, Sweden
Farahnaz Yekeh
Department of Computing Science, Umeå, Sweden
Ladda ner artikelIngår i: The 27th annual workshop of the Swedish Artificial Intelligence Society (SAIS); 14-15 May 2012; Örebro; Sweden
Linköping Electronic Conference Proceedings 71:2, s. 7-15
In recent years; the interest in developing personalised applications for home environment has grown since it has a wide reach in helping people in their daily activities.
However; for our purposes the concept activities of daily living also need to include work and leisure activities not necessarily performed in home environments. In this article; we describe an ongoing effort to develop a generic framework for assessing ability and tailoring of support applications in the health domain. We also give an overview of the approaches that have been adopted for personalisation and user modelling to various application areas. Suggestions of future development are provided.
Personalisation; User modelling; User models; Clinical decision-support systems; Multi-agent systems; Ambient intelligence; Human computer interaction; Adaptive hypermedia system; E-learning; Adaptive education systems; Machine learning; Intelligent tutoring systems
1. Kobsa; A. Generic user modeling systems. User modeling and user adapted interaction; 11; 49–63; (2001).
2. Alatalo; T.; and Siponen; M. T. Addressing the personalization paradox in the development of electronic commerce systems. In Post-proceedings of the EBusiness Research Forum (eBRF); Tampere; Finland; (2001).
3. Lindgren H; Winnberg P. A Model for Interaction Design of Personalised Knowledge Systems in the Health Domain. In M. Szomszor and P. Kostkova (Eds.): E-Health 2010; LNICST 69; pp. 235–242; Springer Verlag (2011).
4. Nardi; B. (ed). Context and Consciousness: Activity Theory and Human-Computer Interaction. MIT Press; (1996).
5. Kadouche; R.; Abdulrazak; B; Giroux; S.; Mokhtari; M. Personalization and Multi-user management in Smart Homes for disabled people. International Journal of Smart Home (IJSH); Vol.3; No.1; 39-48 (2009).
6. Lindgren; H.; Nilsson; I. Towards User-Authored Agent Dialogues for Assessment in Personalised Ambient Assisted Living. (Submitted)
7. Wilmott S.; Vreeswijk G.; Chesñevar C.; South M.; McGinnis J.; Modgil S.; Rahwahn I.; Reed C.; Simari G. Towards an Argument Interchange Format for Multiagent Systems. In Proc. of the 3rd. Intl. Workshop on Argumentation and Multiagent Systems (ArgMAS 2006); Japan; May (2006).
8. Lindgren; H. Personalisation of Internet-Mediated Activity Support Systems in the Rehabilitation of Older Adults – A Pilot Study. In: proc Personalisation for e-Health 2009; pp. 20-27; Verona; (2009).
9. Lindgren; H.; Nilsson; I. Towards User-Authored Agent Dialogues for Assessment in Personalised Ambient Assisted Living. (Submitted)
10. Lindgren; H. Persuasive Technology Composed by Domain Experts for Improving Health in the Mining Industry. (submitted)
11. Lindgren H; Surie D; Nilsson I. Agent-Supported Assessment for Adaptive and Personalized Ambient Assisted Living. In: Juan M. Corchado; Javier Bajo; Kasper Hallenborg; Paulina Golinska and Rafael Corchuelo (Eds.) Trends in Practical Applications of Agents and Multiagent Systems; pp. 23-32. Springer (2011).
12. Surie; D.; Janlert; L-E.; Pederson; T.; Roy; D. Egocentric interaction as a tool for designing ambient ecologies – The case of the easy ADL ecology. Journal of Pervasive and Mobile Computing; Special Issue on Ambient Ecologies; Elsevier; January (2012).
13. Surie; D. Egocentric interaction for Ambient Intelligence. PhD Thesis; Department of Computing Science; Umeå University; Sweden; (2012).
14. Surie; D.; Pederson; T.; Lagriffoul; F.; Janlert; L.-E.; and Sjölie; D. Activity Recognition using an Egocentric Perspective of Everyday Objects. In Proceedings of the IFIP International Conference on Ubiquitous Intelligence and Computing; Hong Kong; China; Springer LNCS 4611; pp. 246-257; (2007).
15. Lindgren H. Towards personalized decision support in the dementia domain based on clinical practice guidelines. User Modeling and User-Adapted Interaction 21(4):377-m 406 (2011). 16. Lindgren; H. Limitations in Physicians’ knowledge when assessing dementia diseases – an evaluation study of a decision-support system. Stud Health Technol Inform 169;120-124; IOS Press (2011).
17. Lindgren H. Towards Context-Based Inquiry Dialogues for Personalized Interaction. In: Yves Demazeau; Michal Pechoucek; Juan M. Corchado and Javier Bajo (Eds.) PAAMS 2011. Advances in Intelligent and Soft Computing 88; pp. 151-161; Springer (2011).
18. Isern; D.; Sánchez; D.; and Moreno; A. Agents applied in health care: A review. I. J. Medical Informatics 79(3): 145- 166 (2010).
19. Walton; D. Argumentation Schemes for Presumptive Reasoning. Mahwah; N.J.: Erlbaum (1996).
20. Lindgren H.; Yekeh F.; Baskar J.; Yan C. Agent-Supported Assessment for Personalized Ambient Assisted Living. To appear in: Proceedings of Agents for Health Care workshop (A2HC 2012) (2012).
21. Rodríguez; M.D.; Favela; J.; Preciado; A.; Vizcaíno; A. Agent-based ambient intelligence for healthcare. AI Communications 18 (3) 201–216 (2005).
22. Isern; D.; Sánchez; D.; Moreno; A. HeCaSe2: a multi-agent ontology-driven guideline enactment engine; in: H.-D. Burkhard; G. Lindemann; R. Verbrugge; L.Z. Varga (Eds.); Proceedings of the 5th International Central and Eastern European Conference on Multi-Agent Systems; CEEMAS 2007; vol. 4696 of LNAI; Springer Verlag; Leipzig; Germany; pp. 322–324 (2007).
23. Harvey; C. F.; Smith; P.; and Lund; P. Providing a networked future for interpersonal information retrieval: InfoVine and user modeling. Interacting with Computers; 10; 195- 212 (1998).
24. Eslami; M.Z.; Zarghami; A.; Sapkota; B.; and Sinderen; M.V.; Personalized Service Creation by Non-technical Users in the Homecare Domain; In Proceedings of the International Conference on Ambient Systems; Networks and Technologies (ANT 2011); Ontario; Canada (2011).
25. Vildjiounaite; E.; Kantorovitch; J.; Niskanen; I.; Towards the user confidence in sensor-rich interactive application scenarios. Accepted to workshop on Semantic Models for Adaptive Interactive Systems (SEMAIS 2011) at IUI 2011; Palo Alto; USA (2011).
26. Friedewald; M.; Costa; O. C.; Science and Technology Roadmapping: Ambient Intelligence in Everyday Life (AmI@Life). June (2003).
27. Magerkurth; C.; Etter; R.; Janse; M.; Kela; J. Kocsis; O.; Ramparany; F. An intelligent user service architecture for networked home environments; In: 2nd International Conference on Intelligent Environments (2006).
28. Khedr; M.; Karmouch; A. ACAN-Ah hoc Context Aware Network. IEEE CCECE’02; Winnipeg; Canada (2002).
29. Nehmer; J.; Becker; M.; Karshmer; A.; and Lamm; R. Living assistance systems: an ambient intelligence approach. In
Proceeding of the 28th international Conference on Software Engineering. ICSE ’06. ACM Press; New York; NY; 43-50; Shanghai; China; May 20 - 28 (2006).
30. AAL.: The Ambient Assisted Living (AAL) Joint Programme; Available online at http://www.aal-europe.eu/ (accessed 20th February 2012).
31. Pollack; M.E.; Brown; L.; Colbry; D.; Orosz; C.; Peintner; B.; Ramakrishnan; S.; Engberg; S.; Matthews; J.; D.-J.; J.; McCarthy; C.; Thrun; S.; Montemerlo; M.; Pineau; J.; Roy; N. Pearl: A Mobile Robotic Assistant for the Elderly. AAAI Workshop on Automation as Caregiver; (2002).
32. Elger; G.; Furugen; B.: ”SmartBo” – An ICT and computerbased demonstration home for disabled people; Improving the Quality of Life for the European Citizen. IOS Press; (1998).
33. Adlam; T.; Orpwood; R. Taking the Gloucester Smart House from the Laboratory to the Living Room. In proc. The 3rd International Workshop on Ubiquitous Computing for Pervasive Healthcare Applications; (2004).
34. Hoey; J.; Poupart; P.; Bertoldi; A.V.; Craig; T.; Boutilier; C. and Mihailidis; A. Automated handwashing assistance for persons with dementia using video and a partially observable Markov decision process. Computer Vision and Image Understanding; Special Issue on Intelligent Vision Systems; Volume 114; pp. 503-51; (2010).
35. Jakkula; V.; Cook; D. Anomaly detection using temporal data mining in a smart home environment. Methods of Information in Medicine; Volume 47; pp. 70-5; (2008).
36. Ruyter; B.D.; Pelgrim; E. Ambient assisted-living research in carelab; Interactions; Volume 14; pp. 30-33; (2007).
37. Pederson; T.; Janlert; L-E.; Surie; D. A Situative Space Model for Mobile Mixed-Reality Computing. IEEE Pervasive Computing; Vol. 10; Issue 4; (2011).
38. Brusilovsky P.; Kobsa A.; and Nejdl W.; (Eds.): The Adaptive Web; LNCS 4321; pp. 3 – 53; (2007).
39. Rubio; C.; Annicchiarico; R.; Barrue; C.; Cortes; U.; Sanchez-Marre; M.; Caltagirone; C. iTutorials for the Aid of Cognitively Impaired Elderly Population. eHealth 2010: 303-310 (2010).
40. Erriquez E. and Grasso; F. Generation of Personalised Advisory Messages: an Ontology Based Approach. 21th IEEE International Symposium on Computer-Based Medical Systems; Jyvaskyla; Finland; 19-21; p. 437-442; IEEE press (2008).
41. Begum; S.; Ahmed; M.U.; Funk; P.; Xiong; N.; Schéele; B.V.. A Case-Based Decision Support System for Individual Stress Diagnosis Using Fuzzy Similarity Matching. Computational Intelligence (CI); vol 25; nr 3; p180-195(16); Blackwell Publishing; August; (2009).