Samantha Bail
The University of Manchester, UK
Bijan Parsia
The University of Manchester, UK
Ulrike Sattler
The University of Manchester, UK
Ladda ner artikelIngår i: Proceedings of the First International Workshop on Debugging Ontologies and Ontology Mappings - WoDOOM12; Galway; Ireland; October 8; 2012
Linköping Electronic Conference Proceedings 79:2, s. 13-24
Publicerad: 2012-11-28
ISBN:
ISSN: 1650-3686 (tryckt), 1650-3740 (online)
Given the high expressivity of the Web Ontology Language OWL 2; there is a potential for great diversity in the logical content of OWL ontologies. The fact that many naturally occurring entailments of such ontologies have multiple justifications indicates that ontologies often overdetermine their consequences; suggesting a diversity in supporting reasons. On closer inspection; however; we often find that justifications – even for multiple entailments – appear to be structurally similar; suggesting that their multiplicity might be due to diverse material; not formal grounds for an entailment.
In this paper; we introduce and explore several equivalence relations over justifications for entailments of OWL ontologies which partition a set of justifications into structurally similar subsets. These equivalence relations range from strict isomorphism to looser notions of similarity; covering justifications which contain different class expressions; or even
different numbers of axioms. We present the results of a survey of 83 ontologies from the bio-medical domain; showing that OWL ontologies used in practice often contain large numbers of structurally similar justifications.
1. Baader; F.; Kusters; R.; Borgida; A.; McGuinness; D.L.: Matching in description logics. J. of Logic and Computation 9(3); 411-447 (1999)
2. Baader; F.; Morawska; B.: Unication in the description logic EL. In: Proc. of RTA-09. pp. 350-364 (2009)
3. Baader; F.; Pe~naloza; R.; Suntisrivaraporn; B.: Pinpointing in the description logic EL+. In: Proc. of KI-07. pp. 52-67 (2007)
4. Bail; S.; Parsia; B.; Sattler; U.: The justicatory structure of OWL ontologies. In: Proc. of OWLED-10 (2010)
5. Davis; M.: Obvious logical inferences. In: Proc. of IJCAI-81. pp. 530-531 (1981)
6. Horridge; M.; Bail; S.; Parsia; B.; Sattler; U.: The cognitive complexity of OWL justications. In: Proc. of ISWC-11 (2011)
7. Horridge; M.; Parsia; B.: From justications to proofs for entailments in OWL. In: Proc. of OWLED-09 (2009)
8. Horridge; M.; Parsia; B.; Sattler; U.: Laconic and precise justications in OWL. In: Proc. of ISWC-08. pp. 323-338 (2008)
9. Horrocks; I.; Kutz; O.; Sattler; U.: The even more irresistible SROIQ. In: Proc. of KR-06 (2006)
10. Johnson-Laird; P.N.: Mental models in cognitive science. Cognitive Science 4(1); 71-115 (1980)
11. Kalyanpur; A.; Parsia; B.; Cuenca Grau; B.: Beyond asserted axioms: Fine-grain justications for OWL-DL entailments. In: Proc. of DL-06 (2006)
12. Kalyanpur; A.; Parsia; B.; Sirin; E.; Cuenca Grau; B.; Hendler; J.: Swoop: A web ontology editing browser. J. of Web Semantics 4(2); 144-153 (2006)
13. Kalyanpur; A.; Parsia; B.; Sirin; E.; Hendler; J.: Debugging unsatisable classes in OWL ontologies. J. of Web Semantics 3(4); 268-293 (2005)
14. Meyer; T.; Moodley; K.; Varzinczak; I.: First steps in the computation of root justications. In: Proc. of ARCOE-10 (2010)
15. Schlobach; S.; Cornet; R.: Non-standard reasoning services for the debugging of description logic terminologies. In: Proc. of IJCAI-03. pp. 355-362 (2003)