Due to increased burden on the environment caused by human activities, focus on industrial ecology designs are gaining more attention. In that perspective an environmentally effective integration of bionergy and agriculture systems has significant potential. This work introduces a modeling approach that builds on Life Cycle Inventory and carries out Life Cycle Impact Assessment for a consequential Life Cycle Assessment on integrated bioenergy and agriculture systems. The model framework is built in Python which connects various freely available software that handle different aspects of the overall model. C-TOOL and Yasso07 are used in the carbon balance of agriculture, Dynamic Network Analysis is used for the energy simulation and Brightway2 is used to build a Life Cycle Inventory compatible database and processes it for various impacts assessment methods. The model is successfully demonstrated using a manure utilization case study where the manure is used to produce biogas and then heat and power, whereas its digestate is used as an organic fertilizer to a wheat field. The case study is compared with direct manure to wheat field application.
Francesco Cherubini, Anders H. Stromman, and Edgar Hertwich. Effects of boreal forest management practices on the climate impact of CO2 emissions from bioenergy. Ecological Modelling, 223(1):59–66, December 2011. ISSN 03043800.
doi: 10.1016/j.ecolmodel.2011.06.021.
Danish Ministry of Climate. Energy and Buildings. OUR FUTURE ENERGY. Technical report, Danish Ministry of Climate. Energy and Buildings, Copenhagen.
P. de Willigen. An analysis of the calculation of leaching and denitrification losses as practised in the NUTMON approach.
Rapport-Plant Research International, (18), 2000.
Capucine Dupont, Rodica Chiriac, Guillaume Gauthier, and François Toche. Heat capacity measurements of various biomass types and pyrolysis residues.
Fuel, 115:644–651, January 2014. ISSN 00162361. doi: 10.1016/j.fuel.2013.07.086.
Brian Elmegaard and Niels Houbak. Dna: A general energy system simulation tool. Proceedings of SIMS 2005, pages 43–52, 2005.
A. Friedl, E. Padouvas, H. Rotter, and K. Varmuza. Prediction of heating values of biomass fuel from elemental composition. Analytica Chimica Acta, 544(1-2):191–198, July 2005. ISSN 00032670. doi: 10.1016/j.aca.2005.01.041.
Rolf Frischknecht. LCI modelling approaches applied on recycling of materials in view of environmental sustainability, risk perception and eco-efficiency. The International Journal of Life Cycle Assessment, 15(7):666–671, June 2010. ISSN 0948-3349. doi: 10.1007/s11367-010-0201-6.
M. J. Goedkoop, R Heijungs, M. Huijbregts, A. De Schryver, J. Struijs, and R. Van Zelm. Recipe 2008, a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level; first edition report i: Characterisation. Technical report, 6 January 2009. Homepage: http://www.lcia-recipe.net/.
The Danish Government. The Danish Climate Policy Plan Towards a low carbon society. Technical report, Danish Government, Copenhagen, 2013a. Retrieved from: http://www.ens.dk/sites/ens.dk/files/policy/danish-climateenergy-policy/danishclimatepolicyplan_uk.pdf.
The Danish Government. Catalogue of Danish Climate Change Mitigation Measures. Technical report, Danish Government, Copenhagen, 2013b. Retrienved from: http://www.ens.dk/sites/ens.dk/files/policy/danish-climateenergy-policy/dk_climate_change_mitigation_uk.pdf.
Lorie Hamelin, Marianne Waesnes, Henrik Wenzel, and Bjorn M Petersen. Environmental consequences of future biogas technologies based on separated slurry. Environmen-tal science & technology, 45(13):5869–77, July 2011. ISSN 1520-5851. doi: 10.1021/es200273j.
Michael Hauschild, GOEDKOOP Mark, GUINEE Jerome, HEIJUNGS Reinout, HUIJBREGTS Mark, JOLLIET Olivier, MARGNI Manuele, and DE SCHRYVER An. Recommendations for Life Cycle Impact Assessment in the European context - based on existing environmental impact assessment models and factors (International Reference Life Cycle Data System - ILCD handbook), October 2010. ISSN 1018-5593.
Fortunat Joos, Michele Bruno, Roger Fink, Ulrich Siegenthaler, Thomas F. Stocker, Corinne Le Quere, and Jorge L. Sarmiento. An efficient and accurate representation of complex oceanic and biospheric models of anthropogenic carbon uptake. Tellus B, 48(3):397–417, July 1996. ISSN 0280-6509. doi: 10.1034/j.1600-0889.1996.t01-2-00006.x.
Fortunat Joos, I. Colin Prentice, Stephen Sitch, Robert Meyer, Georg Hooss, Gian-Kasper Plattner, Stefan Gerber, and Klaus Hasselmann. Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) Emission Scenarios. Global Biogeochemical Cycles, 15(4):891–907, December 2001. ISSN 08866236. doi: 10.1029/2000GB001375.
Jari Liski, Taru Palosuo, Mikko Peltoniemi, and Risto Sievänen. Carbon and decomposition model Yasso for forest soils. Ecological Modelling, 189(1-2):168–182, November 2005. ISSN 03043800. doi: 10.1016/j.ecolmodel.2005.03.005.
Chris Mutel. Brightway2, 2015. Homepage: www.brightwaylca.org.
NaturErhvervstyrelsen. Vejledning om gØdsknings- og harmoniregler. Technical report, Ministeriet for Fødevarer, Landbrug og Fiskeri, 2013.
Thomas Nemecek and Julian Schnetzer. Methods of assessment of direct field emissions for LCIs of agricultural production systems. Data v3. 0, 2012.
D.W. Pennington, J. Potting, G. Finnveden, E. Lindeijer, O. Jolliet, T. Rydberg, and G. Rebitzer. Life cycle assessment part 2: Current impact assessment practice. Environment International, 30(5):721 – 739, 2004. ISSN 0160-4120. doi: http://dx.doi.org/10.1016/j.envint.2003.12.009.
Bjorn M. Petersen, Jorgen E. Olesen, and Tove Heidmann. A flexible tool for simulation of soil carbon turnover. Ecological Modelling, 151(1):1–14, May 2002. ISSN 03043800. doi: 10.1016/S0304-3800(02)00034-0.
Bjorn M. Petersen, Lars S. Jensen, Sø ren Hansen, Anders Pedersen, Trond M. Henriksen, Peter Sø rensen, Isabelle Trinsoutrot-Gattin, and Jø rgen Berntsen. CN-SIM: a model for the turnover of soil organic matter. II. Short-term carbon and nitrogen development. Soil Biology and Bio-chemistry, 37(2):375–393, February 2005. ISSN 00380717. doi: 10.1016/j.soilbio.2004.08.007.
Bjorn Molt Petersen, Marie Trydeman Knudsen, John Erik Hermansen, and Niels Halberg. An approach to include soil carbon changes in life cycle assessments. Journal of Cleaner Production, 52:217–224, August 2013. ISSN 09596526. doi: 10.1016/j.jclepro.2013.03.007.
G. Rebitzer, T. Ekvall, R. Frischknecht, D. Hunkeler, G. Norris, T. Rydberg, W.-P. Schmidt, S. Suh, B.P. Weidema, and D.W. Pennington. Life cycle assessment: Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environment International, 30(5):701 – 720, 2004. ISSN 0160-4120. doi: http://dx.doi.org/10.1016/j.envint.2003.11.005.
R. N. Roy, R.V. Misra, J.P. Lesschen, and E.M. Smaling. Assessment of soil nutrient balance: Approaches and methodologies. Technical report, Food and Agriculture Organization of the United Nations, 2003. Retrieved from: ftp://ftp.fao.org/docrep/fao/006/y5066e/y5066e00.pdf.
Jon Schnute. A Versatile Growth Model with Statistically Stable Parameters. Canadian Journal of Fisheries and Aquatic Sciences, 38(9):1128–1140, September 1981. ISSN 0706-652X. doi: 10.1139/f81-153.
Sangwon Suh and Gjalt Huppes. Methods for life cycle inventory of a product. Journal of Cleaner Production, 13(7):687 – 697, 2005. ISSN 0959-6526. doi: http://dx.doi.org/10.1016/j.jclepro.2003.04.001.
Stanislav V. Vassilev, David Baxter, Lars K. Andersen, and Christina G. Vassileva. An overview of the chemical composition of biomass. Fuel, 89(5):913–933, May 2010. ISSN 00162361. doi: 10.1016/j.fuel.2009.10.022.
B.P. Weidema, Ch. Bauer, R. Hischier, Ch. Mutel, T. Nemecek, J. Reinhard, C.O. Vadenbo, and G. Wernet. The ecoinvent database: Overview and methodology, Data quality guideline for the database version 3, 2013. Homepage: www.ecoinvent.org.