Konferensartikel

Development of a Modelica Library for Simulation of Diffractive Optomechatronic Systems

Thomas Kaden
Technische Universität Dresden, Institute of Automation, Faculty of Electrical Engineering, Germany

Klaus Janschek
Technische Universität Dresden, Institute of Automation, Faculty of Electrical Engineering, Germany

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp11063199

Ingår i: Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical Univeristy; Dresden; Germany

Linköping Electronic Conference Proceedings 63:23, s. 199-206

Visa mer +

Publicerad: 2011-06-30

ISBN: 978-91-7393-096-3

ISSN: 1650-3686 (tryckt), 1650-3740 (online)

Abstract

The proper operation and performance of optomechatronic systems is fundamentally affected by changes of the relative geometry caused by thermal influences; mechanical displacements and vibrations. Such extrinsic and intrinsic disturbances can be compensated by active control of optical elements like lenses; diffraction gratings or laser sources. In the context with system design and performance analysis tasks it is big challenge to model and simulate the coupled optomechatronic behavior including closed-loop control and disturbances properly on a representative level.

A promising approach is the integration of diffractive optic models in the well established physical object oriented modeling environment Modelica®; which offers already a broad support of multidomain libraries; e.g. electrical; mechanical and thermal.

Therefore the basic modeling requirements for diffractive optical elements are outlined followed by a discussion of possible problems and solutions for a computationally efficient implementation of a twodimensional spatial optical library for Modelicabased simulation environments.

Nyckelord

Modelica; Diffractive Optics; Optical library

Referenser

Inga referenser tillgängliga

Citeringar i Crossref