Konferensartikel

A Modelica Library for Thin-Layer Drying of Agricultural Products

Augusto Souza
Agricultural and Biosystems Engineering, Iowa State University, USA

Brian Steward
Agricultural and Biosystems Engineering, Iowa State University, USA

Carl Bern
Agricultural and Biosystems Engineering, Iowa State University, USA

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp18154227

Ingår i: Proceedings of The American Modelica Conference 2018, October 9-10, Somberg Conference Center, Cambridge MA, USA

Linköping Electronic Conference Proceedings 154:24, s. 227-235

Visa mer +

Publicerad: 2019-02-26

ISBN: 978-91-7685-148-7

ISSN: 1650-3686 (tryckt), 1650-3740 (online)

Abstract

Grain drying is highly influenced by environmental and technical factors. Thus, it is essential to track the psychrometric properties of the drying air, besides other grain characteristics, for successful control of this operation. Mathematical modeling of a drying process can be complicated and non-trivial when considering all the involved factors. Based on theoretical differential equations, this study calculates different aspects of grains during their drying process. Modelica and Dymola were used to model blocks of thin-layers of corn, barley, and soybean. The modeled blocks could be used to reproduce a simulation of a grain drying process and keep track of the products moisture content and temperature, besides other psychrometric properties of the air. The developed model has the potential to be used to either to compare to a real grain drying process or as a teaching instrument for grain handling.

Nyckelord

agriculture, grain drying, Modelica, corn, soybean, barley

Referenser

Antoine Aurousseau, Valery Vuillerme, and Jean-Jacques Bezian. Modeling of Linear Concentrating Solar Power using Direct Steam Generation with Parabolic-Trough. pages 595–603, 9 2015. doi:10.3384/ecp15118595. URL http://www.ep.liu.se/ecp/article.asp?issue=118%26article=64.

Jannatul Azmir, Qinfu Hou, and Aibing Yu. Discrete particle simulation of food grain drying in a fluidised bed. Powder Technology, 323:238–249, 2018. ISSN 1873328X. doi:10.1016/j.powtec.2017.10.019. URL https://doi.org/10.1016/j.powtec.2017.10.019.

G. R. Baughman, M. Y. Hamdy, and H. J. Barre. Analog Computer Simulation of Deep-Bed Drying of Grain. Transactions of the ASAE, 14(6):1058–1060, 1971. ISSN 2151-0059. doi:10.13031/2013.38452. URL http://elibrary.asabe.org/abstract.asp??JID=3&AID=38452&CID=t1971&v=14&i=6&T=1.

Luis A. Bortolaia, Oleg Khatchatourian, and Horacio A. Vielmo. Analysis of soybean drying dynamics in thin layer. 13th Brazilian Congress of Thermal Sciences and Engineering December 05-10, 2010, Uberlandia, MG, Brazil, 2010.

Donald B. Brooker, Fred W. Bakker-Arkema, and Carl W. Hall. Drying and storage of grains and oilseeds. Van Nostrand Reinhold, 1992. ISBN 9780442205157. URL http://www.springer.com/us/book/9780442205157.

D.M. Bruce. Exposed-layer barley drying: Three models fitted to new data up to 150_C. Journal of Agricultural Engineering Research, 32(4):337–348, 12 1985. ISSN 0021-8634. doi:10.1016/0021-8634(85)90098-8. URL https://www.sciencedirect.com/science/article/pii/0021863485900988.

Clyde M. Christensen and H. H. Kaufmann. Deterioration of Stored Grains by Fungi. Annual Review of Phytopathology, 3(1):69–84, 9 1965. ISSN 0066-4286. doi:10.1146/annurev.py.03.090165.000441. URL http://www.annualreviews.org/doi/10.1146/annurev.py.03.090165.000441.

Fabio B. Freire, Marcos A.S. Barrozo, Dermeval J.M. Sartori, and Jose T. Freire. Study of the drying kinetics in thin layer: Fixed and moving bed. Drying Technology, 23(7):1451–1464, 2005. ISSN 07373937. doi:10.1081/DRT-200063508.

Rahul Jain, Kannan M. Moudgalya, Peter Fritzson, and Adrian Pop. Development of a Thermodynamic Engine in Open- Modelica. pages 89–99, 7 2017. doi:10.3384/ecp1713289. URL http://www.ep.liu.se/ecp/article.asp?issue=132%26article=009.

C.-C. Jia, W. Yang, T. J. Siebenmorgen, and A. G. Cnossen. Development of Computer Simulation Software for Single Grain Kernel Drying, Tempering, and Stress Analysis. Transactions of the ASAE, 45(5):1485–1492, 2002. ISSN 2151-0059. doi:10.13031/2013.11039. URL http://elibrary.asabe.org/abstract.asp??JID=3&AID=11039&CID=t2002&v=45&i=5&T=1.

O. A. Khatchatourian, H. A. Vielmo, and L. A. Bortolaia. Modelling and simulation of cross flow grain dryers. Biosystems Engineering, 116(4):335–345, 2013. ISSN 15375110. doi:10.1016/j.biosystemseng.2013.09.001. URL http://dx.doi.org/10.1016/j.biosystemseng. 2013.09.001.

J. Lacey. Pre- and post-harvest ecology of fungi causing spoilage of foods and other stored products. Journal of Applied Bacteriology, 67:11s–25s, 12 1989. ISSN 00218847. doi:10.1111/j.1365-2672.1989.tb03766.x. URL http://doi.wiley.com/10.1111/j.1365-2672.1989.tb03766.x.

Huizhen Li and R Vance Morey. Thin-layer drying of yellow dent corn. Transactions of the ASABE, 27(2):581–585, 1984. ISSN 00012351. doi:10.13031/2013.32832. URL http://elibrary.asabe.org/abstract.asp?aid=32832&t=3.

Marek Markowski, Ireneusz Bialobrzewski, and Agnieszka Modrzewska. Kinetics of spouted-bed drying of barley: Diffusivities for sphere and ellipsoid. Journal of Food Engineering, 96(3):380–387, 2 2010. ISSN 0260-8774. doi:10.1016/J.JFOODENG.2009.08.011. URL https://www.sciencedirect.com/science/article/pii/S0260877409004099?via%3Dihub.

Lamber Otten and George Samaan. Determination of the Specific Heat of Agricultural Materials: Part II. Experimental Results. Canadian Agricultural Engineering, 22(1):25–27, 1980.

S. Pabis, D. S. Jayas, and S. Cenkowski. Grain Drying: Theory and Practice. John Wiley and Sons Ltd, New York, United States, 1989. ISBN 0471573876.

USDA. Grain Inspection Handbook - Book II. Washington, DC, 2013. URL https://www.gipsa.usda.gov/fgis/handbook/BK2/BookII4-11-2017.pdf.

J.S.Wall, C. James, and G.L. Donaldson. Corn proteins: chemical and physical changes during drying of grain. Cereal chemistry, v. 52(no. 6):779–790, 1975.

Citeringar i Crossref