Konferensartikel

Vector Field Interpolation with Radial Basis Functions

Michal Smolik
Faculty of Applied Sciences, University of West Bohemia, Plzen, Czech Republic

Vaclav Skala
Faculty of Applied Sciences, University of West Bohemia, Plzen, Czech Republic

Ladda ner artikel

Ingår i: Proceedings of SIGRAD 2016, May 23rd and 24th, Visby, Sweden

Linköping Electronic Conference Proceedings 127:3, s. 15-21

Visa mer +

Publicerad: 2016-05-30

ISBN: 978-91-7685-731-1

ISSN: 1650-3686 (tryckt), 1650-3740 (online)

Abstract

This paper presents a new approach for the Radial Basis Function (RBF) interpolation of a vector field. Standard approaches for interpolation randomly select points for interpolation. Our approach uses the knowledge of vector field topology and selects points for interpolation according to critical points location. We presents the results of interpolation errors on a vector field generated from analytical function.

Nyckelord

Vector field Radial basis functions Interpolation Critical points

Referenser

[EJF09] EDWARD J. FUSELIER G. B. W.: Stability and error estimates for vector field interpolation and decomposition on the sphere with rbfs. SIAM Journal on Numerical Analysis 47, 5 (2009), 3213–3239. 1

[Fas07] FASSHAUER G. E.: Meshfree approximation methods with MATLAB, vol. 6. World Scientific, 2007. 2

[FP08] FORNBERG B., PIRET C.: On choosing a radial basis function and a shape parameter when solving a convective PDE on a sphere. J. Comput. Physics 227, 5 (2008), 2758–2780. 3

[FW09] FLYER N., WRIGHT G. B.: A radial basis function method for the shallow water equations on a sphere. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (2009), The Royal Society, pp. rspa–2009. 4

[Har71] HARDY R. L.: Multiquadric equations of topography and other irregular surfaces. Journal of geophysical research 76, 8 (1971), 1905–1915. 3

[HH89] HELMAN J., HESSELINK L.: Representation and display of vector field topology in fluid flow data sets. IEEE Computer 22, 8 (1989), 27–36. 2

[MZT*14] MA J., ZHAO J., TIAN J., YUILLE A. L., TU Z.: Robust point matching via vector field consensus. IEEE Transactions on Image Processing 23, 4 (2014), 1706–1721. 1

[PS97] PHILIPPOU P. A., STRICKLAND R. N.: Vector field analysis and synthesis using three-dimensional phase portraits. CVGIP: Graphical Model and Image Processing 59, 6 (1997), 446–462. 2

[PS11] PAN R., SKALA V.: A two-level approach to implicit surface modeling with compactly supported radial basis functions. Engineering with Computers 27, 3 (2011), 299–307. 2

[Sch79] SCHAGEN I.: Interpolation in two dimensionsâ?A ?Ta new technique. IMA Journal of Applied Mathematics 23, 1 (1979), 53–59. 3

[Ska15] SKALA V.: Meshless interpolations for computer graphics, visualization and games. In Eurographics 2015 - Tutorials, Zurich, Switzerland, May 4-8, 2015 (2015). 2

[US04] UHLIR K., SKALA V.: Radial basis function use for the restoration of damaged images. In International Conference on Computer Vision and Graphics, ICCVG 2004, Warsaw, Poland, September 2004, Proceedings (2004), pp. 839–844. 3

[Wen06] WENDLAND H.: Computational aspects of radial basis function approximation. Studies in Computational Mathematics 12 (2006), 231–256. 3

[WTS*05] WEINKAUF T., THEISEL H., SHI K., HEGE H., SEIDEL H.: Extracting higher order critical points and topological simplification of 3d vector fields. In 16th IEEE Visualization Conference (VIS 2005), 23-28 October 2005, Minneapolis, MN, USA (2005), p. 71. 2

[ZMT06] ZHANG E., MISCHAIKOW K., TURK G.: Vector field design on surfaces. ACM Trans. Graph. 25, 4 (2006), 1294–1326.1

Citeringar i Crossref